📌  相关文章
📜  在所有长度为 K 的子数组上最大化子数组的最小值和子数组的总和的乘积

📅  最后修改于: 2022-05-13 01:56:05.050000             🧑  作者: Mango

在所有长度为 K 的子数组上最大化子数组的最小值和子数组的总和的乘积

给定一个包含N个整数的数组arr[] ,任务是在具有K个元素的所有可能子数组中找到 ( min * sum ) 的最大可能值,其中min表示子数组的最小整数, sum表示所有元素的总和的子数组。

示例

方法:上述问题可以借助滑动窗口技术来解决,方法是在数组遍历期间维护一个包含K个元素的窗口,并在变量minimum和分别求和。可以使用类似于此处讨论的算法的多集数据结构来计算所有K大小的子阵列的最小值,并且可以使用此处讨论的算法计算总和。所有K大小窗口的minimum * sum的最大值是必需的答案。

下面是上述方法的实现:

C++
// C++ implementation for the above approach
#include 
using namespace std;
 
// Function to the maximum value of min * sum
// over all possible subarrays of K elements
int maxMinSum(vector arr, int K)
{
    // Store the array size
    int N = arr.size();
 
    // Multiset data structure to calculate the
    // minimum over all K sized subarrays
    multiset s;
 
    // Stores the sum of the surrent window
    int sum = 0;
 
    // Loop to calculate the sum and min of the
    // 1st window of size K
    for (int i = 0; i < K; i++) {
        s.insert(arr[i]);
        sum += arr[i];
    }
 
    // Stores the required answer
    int ans = sum * (*s.begin());
 
    // Loop to iterate over the remaining windows
    for (int i = K; i < N; i++) {
 
        // Add the current value and remove the
        // (i-K)th value from the sum
        sum += (arr[i] - arr[i - K]);
 
        // Update the set
        s.erase(s.find(arr[i - K]));
        s.insert(arr[i]);
 
        // Update answer
        ans = max(ans, sum * (*s.begin()));
    }
 
    // Return Answer
    return ans;
}
 
// Driver Code
int main()
{
    vector arr = { 3, 1, 5, 6, 4, 2 };
    int K = 2;
 
    cout << maxMinSum(arr, K);
 
    return 0;
}


Java
// Java implementation for the above approach
import java.util.HashSet;
 
class GFG {
 
    // Function to the maximum value of min * sum
    // over all possible subarrays of K elements
    public static int maxMinSum(int[] arr, int K)
    {
       
        // Store the array size
        int N = arr.length;
 
        // Multiset data structure to calculate the
        // minimum over all K sized subarrays
        HashSet s = new HashSet();
 
        // Stores the sum of the surrent window
        int sum = 0;
 
        // Loop to calculate the sum and min of the
        // 1st window of size K
        for (int i = 0; i < K; i++) {
            s.add(arr[i]);
            sum += arr[i];
        }
 
        // Stores the required answer
        int ans = sum * (s.iterator().next());
 
        // Loop to iterate over the remaining windows
        for (int i = K; i < N; i++) {
 
            // Add the current value and remove the
            // (i-K)th value from the sum
            sum += (arr[i] - arr[i - K]);
 
            // Update the set
            if (s.contains(arr[i - K]))
                s.remove(arr[i - K]);
            s.add(arr[i]);
 
            // Update answer
            ans = Math.max(ans, sum * (s.iterator().next()));
        }
 
        // Return Answer
        return ans;
    }
 
    // Driver Code
    public static void main(String args[]) {
        int[] arr = { 3, 1, 5, 6, 4, 2 };
        int K = 2;
 
        System.out.println(maxMinSum(arr, K));
    }
}
 
// This code is contributed by saurabh_jaiswal.


Python3
# python implementation for the above approach
 
# Function to the maximum value of min * sum
# over all possible subarrays of K elements
def maxMinSum(arr, K):
 
    # Store the array size
    N = len(arr)
 
    # Multiset data structure to calculate the
    # minimum over all K sized subarrays
    s = set()
 
    # Stores the sum of the surrent window
    sum = 0
 
    # Loop to calculate the sum and min of the
    # 1st window of size K
    for i in range(0, K):
        s.add(arr[i])
        sum += arr[i]
 
    # Stores the required answer
    ans = sum * (list(s)[0])
 
    # Loop to iterate over the remaining windows
    for i in range(K, N):
 
       # Add the current value and remove the
       # (i-K)th value from the sum
        sum += (arr[i] - arr[i - K])
 
        # Update the set
        if arr[i-K] in s:
            s.remove(arr[i-K])
 
        s.add(arr[i])
 
        # Update answer
        ans = max(ans, sum * (list(s)[0]))
 
        # Return Answer
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    arr = [3, 1, 5, 6, 4, 2]
    K = 2
 
    print(maxMinSum(arr, K))
 
    # This code is contributed by rakeshsahni


C#
// C# implementation for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
class GFG {
 
    // Function to the maximum value of min * sum
    // over all possible subarrays of K elements
    public static int maxMinSum(int[] arr, int K)
    {
       
        // Store the array size
        int N = arr.Length;
 
        // Multiset data structure to calculate the
        // minimum over all K sized subarrays
        HashSet s = new HashSet();
 
        // Stores the sum of the surrent window
        int sum = 0;
 
        // Loop to calculate the sum and min of the
        // 1st window of size K
        for (int i = 0; i < K; i++) {
            s.Add(arr[i]);
            sum += arr[i];
        }
 
        // Stores the required answer
        int ans = sum * (s.ToList()[0]);
 
 
        // Loop to iterate over the remaining windows
        for (int i = K; i < N; i++) {
 
            // Add the current value and remove the
            // (i-K)th value from the sum
            sum += (arr[i] - arr[i - K]);
 
            // Update the set
            if (s.Contains(arr[i - K]))
                s.Remove(arr[i - K]);
            s.Add(arr[i]);
 
            // Update answer
            ans = Math.Max(ans, sum * (s.ToList()[0]));
        }
 
        // Return Answer
        return ans;
    }
 
    // Driver Code
    public static void Main() {
        int[] arr = { 3, 1, 5, 6, 4, 2 };
        int K = 2;
 
        Console.Write(maxMinSum(arr, K));
    }
}
 
// This code is contributed by saurabh_jaiswal.


Javascript



输出:
55

时间复杂度: O(N*log N)
辅助空间: O(N)