Python PyTorch 余数()方法
PyTorch 的剩余()方法计算除法运算的元素余数(除以除数)。被除数是张量,而除数可以是数字或张量。此方法应用模运算,如果结果的符号与除数不同,则将除数添加到模结果中。此方法仅支持整数和浮点值输入。以下是此方法的语法 -
Syntax: torch.remainder(input, other, out=None)
Parameters:
- input: the dividend (tensor).
- other: the divisor (tensor or number).
Return: It returns a tensor with remainder values.
让我们借助一些Python示例来了解torch.remainder()方法。
示例 1:
在下面的Python示例中,我们计算火炬张量除以数字时的余数。
这里,-13 除以 5,余数是 2。如何? mod(-13, 5) = -3,然后 -3+5 = 2。当模值与除数不同时,将除数加到模上。请注意当除数为 -5 时余数有何不同。
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
# define the dividend
x = torch.tensor([5, -13, 24, -7, 7])
print("Dividend:", x)
# define the divisor
y = 5
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
z = -5
print("Divisor:",z)
remainder = torch.remainder(x,z)
print("Remainder:",remainder)
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
# define the dividend
x = torch.tensor([15, -13, 15, -15, 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([7, 7, -7, -7, 7])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
Python3
# Python 3 program to demonstrate the
# torch.remainder() method for float values
# importing torch
import torch
# define the dividend
x = torch.tensor([15., -13., 15., -15., 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([7., 7., -7., -7., 7.])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
import numpy as np
# define the dividend
x = torch.tensor([15., -13., 0., -15., 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([0., np.inf, 0., 0., np.inf])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
import numpy as np
# define the dividend
x = torch.tensor([15])
print("Dividend:", x)
# define the divisor
y = torch.tensor([0])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
输出:
Dividend: tensor([ 5, -13, 24, -7, 7])
Divisor: 5
Remainder: tensor([0, 2, 4, 3, 2])
Divisor: -5
Remainder: tensor([ 0, -3, -1, -2, -3])
示例 2:
在下面的Python示例中,当被除数和除数都是火炬张量时,我们计算元素余数。
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
# define the dividend
x = torch.tensor([15, -13, 15, -15, 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([7, 7, -7, -7, 7])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
输出:
Dividend: tensor([ 15, -13, 15, -15, 0])
Divisor: tensor([ 7, 7, -7, -7, 7])
Remainder: tensor([ 1, 1, -6, -1, 0])
示例 3:
在下面的示例中,我们像示例 2 中一样找到余数,但对于浮点张量。
Python3
# Python 3 program to demonstrate the
# torch.remainder() method for float values
# importing torch
import torch
# define the dividend
x = torch.tensor([15., -13., 15., -15., 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([7., 7., -7., -7., 7.])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
输出:
Dividend: tensor([ 15., -13., 15., -15., 0.])
Divisor: tensor([ 7., 7., -7., -7., 7.])
Remainder: tensor([ 1., 1., -6., -1., 0.])
示例 4:
在下面的示例中,尝试找到除以零或无穷大时的余数。
请注意,当除数为零时,无论被除数如何,余数都是 nan(非数字)。当非零除以无穷大时,余数为无穷大,但当零除以无穷大时,余数为 0。还要注意两个张量都是浮点张量。请参阅下一个整数除以零的示例。
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
import numpy as np
# define the dividend
x = torch.tensor([15., -13., 0., -15., 0])
print("Dividend:", x)
# define the divisor
y = torch.tensor([0., np.inf, 0., 0., np.inf])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
输出:
Dividend: tensor([ 15., -13., 0., -15., 0.])
Divisor: tensor([0., inf, 0., 0., inf])
Remainder: tensor([nan, inf, nan, nan, 0.])
示例 5:
在此示例中,我们尝试找到整数除以零时的余数。
请注意,在整数除数的情况下,它会引发运行时错误,而在浮点除数的情况下,它会将余数返回为 nan(如示例 4 中所示)。
Python3
# Python 3 program to demonstrate the
# torch.remainder() method
# importing torch
import torch
import numpy as np
# define the dividend
x = torch.tensor([15])
print("Dividend:", x)
# define the divisor
y = torch.tensor([0])
print("Divisor:",y)
# compute the remainder
remainder = torch.remainder(x,y)
print("Remainder:",remainder)
输出:
Dividend: tensor([15])
Divisor: tensor([0])
RuntimeError: ZeroDivisionError