Python中的 numpy.nanmin()
numpy.nanmin()
函数用于返回数组的最小值或沿数组的任何特定轴,忽略任何 Nan 值。
Syntax : numpy.nanmin(arr, axis=None, out=None)
Parameters :
arr :Input array.
axis :Axis along which we want the min value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column
and axis = 1 means working along the row.
out :Different array in which we want to place the result. The array must have same dimensions as expected output.
Return :Minimum array value(a scalar value if axis is none) or array with minimum value along specified axis.
代码#1:工作
# Python Program illustrating
# numpy.nanmin() method
import numpy as np
# 1D array
arr = [1, 2, 7, 0, np.nan]
print("arr : ", arr)
print("Min of arr : ", np.amin(arr))
# nanmin ignores NaN values.
print("nanMin of arr : ", np.nanmin(arr))
输出 :
arr : [1, 2, 7, 0, nan]
Min of arr : nan
nanMin of arr : 0.0
代码#2:
# Python Program illustrating
# numpy.nanmin() method
import numpy as np
# 2D array
arr = [[np.nan, 17, 12, 33, 44],
[15, 6, 27, 8, 19]]
print("\narr : \n", arr)
# Minimum of the flattened array
print("\nMin of arr, axis = None : ", np.nanmin(arr))
# Minimum along the first axis
# axis 0 means vertical
print("Min of arr, axis = 0 : ", np.nanmin(arr, axis = 0))
# Minimum along the second axis
# axis 1 means horizontal
print("Min of arr, axis = 1 : ", np.nanmin(arr, axis = 1))
输出 :
arr :
[[14, 17, 12, 33, 44], [15, 6, 27, 8, 19]]
Min of arr, axis = None : 6
Min of arr, axis = 0 : [14 6 12 8 19]
Min of arr, axis = 1 : [12 6]
代码#3:
# Python Program illustrating
# numpy.nanmin() method
import numpy as np
arr1 = np.arange(5)
print("Initial arr1 : ", arr1)
# using out parameter
np.nanmin(arr, axis = 0, out = arr1)
print("Changed arr1(having results) : ", arr1)
输出 :
Initial arr1 : [0 1 2 3 4]
Changed arr1(having results) : [14 6 12 8 19]