Python| TensorFlow tan() 方法
Tensorflow 是谷歌开发的开源机器学习库。它的应用之一是开发深度神经网络。
模块tensorflow.math
为许多基本的数学运算提供支持。函数tf.tan()
[别名tf.math.tan
] 为 Tensorflow 中的正切函数提供支持。它期望以弧度形式输入。输入类型是张量,如果输入包含多个元素,则计算元素切线。
Syntax: tf.tan(x, name=None) or tf.math.tan(x, name=None)
Parameters:
x: A tensor of any of the following types: float16, float32, float64, complex64, or complex128.
name (optional): The name for the operation.
Return type: A tensor with the same type as that of x.
代码#1:
Python3
# Importing the Tensorflow library
import tensorflow as tf
# A constant vector of size 6
a = tf.constant([1.0, -0.5, 3.4, -2.1, 0.0, -6.5],
dtype = tf.float32)
# Applying the tan function and
# storing the result in 'b'
b = tf.tan(a, name ='tan')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input type:', a)
print('Input:', sess.run(a))
print('Return type:', b)
print('Output:', sess.run(b))
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
# Applying the tangent function and
# storing the result in 'b'
b = tf.tan(a, name ='tan')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.tan")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input type: Tensor("Const:0", shape=(6, ), dtype=float32)
Input: [ 1. -0.5 3.4 -2.1 0. -6.5]
Return type: Tensor("tan:0", shape=(6, ), dtype=float32)
Output: [ 1.5574077 -0.5463025 0.264317 1.7098469 0. -0.2202772]
代码 #2:可视化
Python3
# Importing the Tensorflow library
import tensorflow as tf
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
# Applying the tangent function and
# storing the result in 'b'
b = tf.tan(a, name ='tan')
# Initiating a Tensorflow session
with tf.Session() as sess:
print('Input:', a)
print('Output:', sess.run(b))
plt.plot(a, sess.run(b), color = 'red', marker = "o")
plt.title("tensorflow.tan")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
Input: [-1. -0.85714286 -0.71428571 -0.57142857 -0.42857143 -0.28571429
-0.14285714 0. 0.14285714 0.28571429 0.42857143 0.57142857
0.71428571 0.85714286 1. ]
Output: [-1.55740772 -1.15486601 -0.86700822 -0.64298589 -0.45689311 -0.29375136
-0.14383696 0. 0.14383696 0.29375136 0.45689311 0.64298589
0.86700822 1.15486601 1.55740772]