Python| PyTorch tan() 方法
PyTorch 是 Facebook 开发的开源机器学习库。它用于深度神经网络和自然语言处理目的。
函数torch.tan()
为 PyTorch 中的切线函数提供支持。它期望以弧度形式输入,输出在 [-∞, ∞] 范围内。输入类型是张量,如果输入包含多个元素,则计算元素切线。
Syntax: torch.tan(x, out=None)
Parameters:
x: Input tensor
name (optional): Output tensor
Return type: A tensor with the same type as that of x.
代码#1:
Python3
# Importing the PyTorch library
import torch
# A constant tensor of size 6
a = torch.FloatTensor([1.0, -0.5, 3.4, -2.1, 0.0, -6.5])
print(a)
# Applying the tan function and
# storing the result in 'b'
b = torch.tan(a)
print(b)
Python3
# Importing the PyTorch library
import torch
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
# Applying the tangent function and
# storing the result in 'b'
b = torch.tan(torch.FloatTensor(a))
print(b)
# Plotting
plt.plot(a, b.numpy(), color = 'red', marker = "o")
plt.title("torch.tan")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
1.0000
-0.5000
3.4000
-2.1000
0.0000
-6.5000
[torch.FloatTensor of size 6]
1.5574
-0.5463
0.2643
1.7098
0.0000
-0.2203
[torch.FloatTensor of size 6]
代码 #2:可视化
Python3
# Importing the PyTorch library
import torch
# Importing the NumPy library
import numpy as np
# Importing the matplotlib.pyplot function
import matplotlib.pyplot as plt
# A vector of size 15 with values from -1 to 1
a = np.linspace(-1, 1, 15)
# Applying the tangent function and
# storing the result in 'b'
b = torch.tan(torch.FloatTensor(a))
print(b)
# Plotting
plt.plot(a, b.numpy(), color = 'red', marker = "o")
plt.title("torch.tan")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
输出:
-1.5574
-1.1549
-0.8670
-0.6430
-0.4569
-0.2938
-0.1438
0.0000
0.1438
0.2938
0.4569
0.6430
0.8670
1.1549
1.5574
[torch.FloatTensor of size 15]