Python中的 Matplotlib.axis.Axis.pickable()函数
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。它是Python中用于二维数组图的惊人可视化库,用于处理更广泛的 SciPy 堆栈。
matplotlib.axis.Axis.pickable()函数
matplotlib 库的轴模块中的Axis.pickable()函数用于返回艺术家是否可拾取。
Syntax: Axis.pickable(self)
Parameters: This method does not accept any parameters.
Return value: This method return whether the artist is pickable.
下面的示例说明了 matplotlib.axis 中的 matplotlib.axis.Axis.pickable()函数:
示例 1:
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np
np.random.seed(19680801)
import matplotlib.pyplot as plt
volume = np.random.rayleigh(27, size = 40)
amount = np.random.poisson(10, size = 40)
ranking = np.random.normal(size = 40)
price = np.random.uniform(1, 10, size = 40)
fig, ax = plt.subplots()
scatter = ax.scatter(volume * 2, amount * 3,
c = ranking * 3,
s = 0.3*(price * 3)**2,
vmin = -4, vmax = 4,
cmap = "Spectral")
legend1 = ax.legend(*scatter.legend_elements(num = 5),
loc ="upper left",
title ="Ranking")
ax.add_artist(legend1)
ax.text(60, 30, "Value return : "
+ str(Axis.pickable(ax)),
fontweight ="bold",
fontsize = 18)
fig.suptitle('matplotlib.axis.Axis.pickable() \
function Example\n', fontweight ="bold")
plt.show()
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
np.random.seed(10**7)
data = np.random.lognormal(size =(10, 4),
mean = 4.5,
sigma = 4.75)
labels = ['G1', 'G2', 'G3', 'G4']
result = cbook.boxplot_stats(data,
labels = labels,
bootstrap = 1000)
for n in range(len(result)):
result[n]['med'] = np.median(data)
result[n]['mean'] *= 0.1
fig, axes1 = plt.subplots()
axes1.bxp(result)
axes1.text(2, 30000,
"Value return : "
+ str(Axis.pickable(axes1)),
fontweight ="bold")
fig.suptitle('matplotlib.axis.Axis.pickable() \
function Example\n', fontweight ="bold")
plt.show()
输出:
示例 2:
Python3
# Implementation of matplotlib function
from matplotlib.axis import Axis
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
np.random.seed(10**7)
data = np.random.lognormal(size =(10, 4),
mean = 4.5,
sigma = 4.75)
labels = ['G1', 'G2', 'G3', 'G4']
result = cbook.boxplot_stats(data,
labels = labels,
bootstrap = 1000)
for n in range(len(result)):
result[n]['med'] = np.median(data)
result[n]['mean'] *= 0.1
fig, axes1 = plt.subplots()
axes1.bxp(result)
axes1.text(2, 30000,
"Value return : "
+ str(Axis.pickable(axes1)),
fontweight ="bold")
fig.suptitle('matplotlib.axis.Axis.pickable() \
function Example\n', fontweight ="bold")
plt.show()
输出: