📅  最后修改于: 2023-12-03 15:32:48.019000             🧑  作者: Mango
Mahout是一个Apache项目,它是一个开源的机器学习库。Mahout的目标是为大规模的数据挖掘、分类、聚类、协同过滤、推荐算法等提供可扩展的、高效的算法实现。
Mahout的主要特点包括:
Mahout支持多种机器学习和数据挖掘算法,包括但不限于以下算法:
Mahout有完整的官方文档和教程,包括以下内容:
下面是一个Mahout实现K-Means聚类算法的示例代码:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.mahout.clustering.classify.WeightedVectorWritable;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.common.distance.CosineDistanceMeasure;
import org.apache.mahout.common.distance.DistanceMeasure;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirIterator;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileValueIterator;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileWriter;
import org.apache.mahout.common.iterator.sequencefile.SequenceFile.Writer;
import org.apache.mahout.math.VectorWritable;
import java.io.IOException;
import java.util.Iterator;
public final class RandomSeedGenerator extends AbstractJob {
public static final String POINTS_DIR_OPTION = "points";
public static final String OUTPUT_DIR_OPTION = "output";
public static final String NUM_CLUSTERS_OPTION = "k";
public static final String OVERWRITE_OPTION = "overwrite";
public static final String DISTANCE_MEASURE_OPTION = "distance";
public static final String SEED_OPTION = "seed";
public static void main(String[] args) throws Exception {
new RandomSeedGenerator().run(args);
}
@Override
public int run(String[] args) throws Exception {
addOption("i", POINTS_DIR_OPTION, "The path to the directory containing the input vectors", true);
addOption("o", OUTPUT_DIR_OPTION, "The path for the output directory.", true);
addOption("k", NUM_CLUSTERS_OPTION, "The number of clusters to generate.", true);
addOption("ow", OVERWRITE_OPTION, "If set, overwrite the output directory.");
addOption("dm", DISTANCE_MEASURE_OPTION, "The Distance Measure to use. Defaults to CosineDistanceMeasure");
addOption("s", SEED_OPTION, "The RNG seed to use. Default is random");
if (parseArguments(args) == null) {
return -1;
}
Path inputPath = getInputPath();
Path outputPath = getOutputPath();
int k = getOption(NUM_CLUSTERS_OPTION, 20);
boolean overwrite = hasOption(OVERWRITE_OPTION);
DistanceMeasure measure = getOption(DISTANCE_MEASURE_OPTION, CosineDistanceMeasure.class);
if (hasOption(SEED_OPTION)) {
RandomUtils.useTestSeed();
}
Configuration conf = getConf();
HadoopUtil.delete(conf, outputPath);
// read the input points and pick k of them as the initial centers
FileSystem fs = FileSystem.get(inputPath.toUri(), conf);
SequenceFile.Writer writer = new SequenceFile.Writer(fs, conf, outputPath, Text.class, WeightedVectorWritable.class);
try {
int i = 0;
for (Iterator<Writable> iter = new SequenceFileValueIterator<Writable>(inputPath, true, conf); iter.hasNext();) {
VectorWritable value = (VectorWritable) iter.next();
writer.append(new Text("centroid-" + i++), new WeightedVectorWritable(1, value.get()));
if (i >= k) {
break;
}
}
} finally {
writer.close();
}
return 0;
}
}