📜  Python块和块

📅  最后修改于: 2020-11-06 06:19:53             🧑  作者: Mango


分块是根据单词的性质将相似单词分组在一起的过程。在下面的示例中,我们定义了必须通过其生成块的语法。语法建议了短语的顺序,例如名词和形容词等,在创建块时将遵循这些顺序。块的图片输出如下所示。

import nltk

sentence = [("The", "DT"), ("small", "JJ"), ("red", "JJ"),("flower", "NN"), 
("flew", "VBD"), ("through", "IN"),  ("the", "DT"), ("window", "NN")]
grammar = "NP: {?*}" 
cp = nltk.RegexpParser(grammar)
result = cp.parse(sentence) 
print(result)
result.draw()

当我们运行上面的程序时,我们得到以下输出-

chunk_1.PNG

更改语法后,我们将得到不同的输出,如下所示。

import nltk

sentence = [("The", "DT"), ("small", "JJ"), ("red", "JJ"),("flower", "NN"),
 ("flew", "VBD"), ("through", "IN"),  ("the", "DT"), ("window", "NN")]

grammar = "NP: {
? * }“ chunkprofile = nltk.RegexpParser(grammar)result = chunkprofile.parse(sentence)print(result)result.draw()

当我们运行上面的程序时,我们得到以下输出-

块_2.PNG

叮叮当当

压缩是从块中删除一系列令牌的过程。如果令牌序列出现在块的中间,则将删除这些令牌,在它们已经存在的位置留下两个块。

import nltk

sentence = [("The", "DT"), ("small", "JJ"), ("red", "JJ"),("flower", "NN"), ("flew", "VBD"), ("through", "IN"),  ("the", "DT"), ("window", "NN")]

grammar = r"""
  NP:
    {+}         # Chunk everything
    }+{      # Chink sequences of JJ and NN
  """
chunkprofile = nltk.RegexpParser(grammar)
result = chunkprofile.parse(sentence) 
print(result)
result.draw()

当我们运行上面的程序时,我们得到以下输出-

PNG

如您所见,符合语法标准的部分作为单独的块从名词短语中被漏掉了。提取不在所需块中的文本的过程称为chinking。