📜  Python – tensorflow.GradientTape.gradient()

📅  最后修改于: 2022-05-13 01:55:27.421000             🧑  作者: Mango

Python – tensorflow.GradientTape.gradient()

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。

gradient()用于使用记录在该磁带上下文中的操作来计算梯度。

示例 1:

Python3
# Importing the library
import tensorflow as tf
  
x = tf.constant(4.0)
  
# Using GradientTape
with tf.GradientTape() as gfg:
  gfg.watch(x)
  y = x * x * x
  
# Computing gradient
res  = gfg.gradient(y, x) 
  
# Printing result
print("res: ",res)


Python3
# Importing the library
import tensorflow as tf
  
x = tf.constant(4.0)
  
# Using GradientTape
with tf.GradientTape() as gfg:
  gfg.watch(x)
  
  # Using nested GradientTape for 
  # calculating higher order derivative
  with tf.GradientTape() as gg:
    gg.watch(x)
    y = x * x * x
  
  # Computing first order gradient
  first_order = gg.gradient(y, x)
  
# Computing Second order gradient
second_order  = gfg.gradient(first_order, x) 
  
# Printing result
print("first_order: ",first_order)
print("second_order: ",second_order)


输出:

res:  tf.Tensor(48.0, shape=(), dtype=float32)

示例 2:

Python3

# Importing the library
import tensorflow as tf
  
x = tf.constant(4.0)
  
# Using GradientTape
with tf.GradientTape() as gfg:
  gfg.watch(x)
  
  # Using nested GradientTape for 
  # calculating higher order derivative
  with tf.GradientTape() as gg:
    gg.watch(x)
    y = x * x * x
  
  # Computing first order gradient
  first_order = gg.gradient(y, x)
  
# Computing Second order gradient
second_order  = gfg.gradient(first_order, x) 
  
# Printing result
print("first_order: ",first_order)
print("second_order: ",second_order)

输出:

first_order:  tf.Tensor(48.0, shape=(), dtype=float32)
second_order:  tf.Tensor(24.0, shape=(), dtype=float32)