Python – tensorflow.GradientTape()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
GradientTape()用于记录自动微分的操作。
Syntax: tensorflow.GradientTape( persistent, watch_accessed_variables)
Parameters:
- persistent(optional): It can either be True or False with default value False. It defines whether persistent gradient tape is created or not.
- watch_accessed_variables: It is a boolean defining whether the tape will automatically watch any (trainable) variables accessed while the tape is active or not.
示例 1:
Python3
# Importing the library
import tensorflow as tf
x = tf.constant(4.0)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
y = x * x * x
# Computing gradient
res = gfg.gradient(y, x)
# Printing result
print("res: ",res)
Python3
# Importing the library
import tensorflow as tf
x = tf.constant(4.0)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
# Using nested GradientTape for calculating higher order derivative
with tf.GradientTape() as gg:
gg.watch(x)
y = x * x * x
# Computing first order gradient
first_order = gg.gradient(y, x)
# Computing Second order gradient
second_order = gfg.gradient(first_order, x)
# Printing result
print("first_order: ",first_order)
print("second_order: ",second_order)
输出:
res: tf.Tensor(48.0, shape=(), dtype=float32)
示例 2:
Python3
# Importing the library
import tensorflow as tf
x = tf.constant(4.0)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
# Using nested GradientTape for calculating higher order derivative
with tf.GradientTape() as gg:
gg.watch(x)
y = x * x * x
# Computing first order gradient
first_order = gg.gradient(y, x)
# Computing Second order gradient
second_order = gfg.gradient(first_order, x)
# Printing result
print("first_order: ",first_order)
print("second_order: ",second_order)
输出:
first_order: tf.Tensor(48.0, shape=(), dtype=float32)
second_order: tf.Tensor(24.0, shape=(), dtype=float32)