📅  最后修改于: 2023-12-03 15:42:26.471000             🧑  作者: Mango
非逻辑门感知器算法是一种机器学习算法,用于分类问题。它是感知器算法的扩展,可以处理非线性问题。
感知器算法基于线性二分类模型:一个输入通过一个权重向量乘以自变量取和,再加上偏置,输出经过一个阶跃函数得到类别标签。
$$ y=\mathrm{sgn}(\omega \cdot x + b) $$
其中,$\mathrm{sgn}$ 表示符号函数,$\omega$ 是权重向量,$x$ 是输入,$b$ 是偏置。
非逻辑门感知器算法在此基础上,使用一组非线性函数来替代原先的阶跃函数,使得模型能够处理非线性问题。这些非线性函数通常是多项式函数或者傅里叶级数。
以下为非逻辑门感知器算法的 Python 代码实现:
import numpy as np
class NLPerceptron:
def __init__(self, degree=2, n_features=2, learning_rate=0.1, max_iter=1000):
self.degree = degree
self.n_input = n_features
self.learning_rate = learning_rate
self.max_iter = max_iter
self.weights = np.random.randn(self.n_hidden, self.n_input)
self.bias = np.random.randn(self.n_hidden)
self.n_output = 1
self.output_weights = np.random.randn(self.n_output, self.n_hidden)
self.output_bias = np.random.randn(self.n_output)
def _activation(self, x, degree):
if degree == 0:
return x
elif degree == 1:
return np.tanh(x)
elif degree == 2:
return np.maximum(0, x)
elif degree == 3:
return np.exp(x) / (np.exp(x) + 1)
elif degree == 4:
return np.sin(x)
else:
raise Exception('Invalid activation')
def _gradient(self, x, degree):
if degree == 0:
return np.ones_like(x)
elif degree == 1:
tanh = np.tanh(x)
return 1 - tanh ** 2
elif degree == 2:
if x >= 0:
return 1
else:
return 0
elif degree == 3:
sigmoid = np.exp(x) / (np.exp(x) + 1)
return sigmoid * (1 - sigmoid)
elif degree == 4:
return np.cos(x)
else:
raise Exception('Invalid activation')
def _forward(self, x):
hidden = np.dot(self.weights, x) + self.bias
hidden = self._activation(hidden, self.degree)
output = np.dot(self.output_weights, hidden) + self.output_bias
return self._activation(output, self.degree)
def _backward(self, x, y, h):
error = y - h
grad_output = self._gradient(h, self.degree)
delta_output = error * grad_output
grad_hidden = self._gradient(np.dot(self.output_weights.T, delta_output), self.degree)
delta_hidden = grad_hidden * np.dot(self.output_weights.T, delta_output)
self.output_weights += self.learning_rate * np.outer(delta_output, self._activation(np.dot(self.weights, x) + self.bias, self.degree))
self.output_bias += self.learning_rate * delta_output
self.weights += self.learning_rate * np.outer(delta_hidden, x)
self.bias += self.learning_rate * delta_hidden
def fit(self, X, y):
X = np.array(X)
y = np.array(y)
for i in range(self.max_iter):
idx = np.random.choice(X.shape[0], size=32, replace=False)
batch_x = X[idx]
batch_y = y[idx]
for x, y in zip(batch_x, batch_y):
h = self._forward(x)
self._backward(x, y, h)
def predict(self, X):
X = np.array(X)
y_pred = np.zeros(X.shape[0])
for i in range(X.shape[0]):
x = X[i]
y_pred[i] = self._forward(x)
return y_pred
其中,_activation
方法代表非线性函数,_gradient
方法代表非线性函数关于自变量的导数,_forward
方法代表前向传播,_backward
方法代表反向传播,fit
方法代表训练过程,predict
方法代表预测过程。