📌  相关文章
📜  计算 NumPy 数组中非 NaN 元素的数量

📅  最后修改于: 2022-05-13 01:55:40.782000             🧑  作者: Mango

计算 NumPy 数组中非 NaN 元素的数量

在本文中,我们将了解如何在Python中计算 NumPy 数组中非 NaN 元素的数量。

NAN:当您不在乎该位置的值时使用它。也许有时用于代替丢失的数据或损坏的数据。

方法一:使用条件

在这个例子中,我们将使用一维数组。在下面给出的代码中,我们遍历给定 NumPy 数组的每个条目并检查该值是否为 NaN。



Python3
import numpy as np
  
ex1 = np.array([1, 4, -9, np.nan])
ex2 = np.array([1, 45, -2, np.nan, 3, 
                -np.nan, 3, np.nan])
  
  
def approach_1(data):
    # here the input data, is a numpy ndarray
      
    # initialize the number of non-NaN elements 
    # in data
    count = 0       
      
    # loop over each entry of the data
    for entry in data:          
        
          # check whether the entry is a non-NaN value
        # or not
        if not np.isnan(entry):     
            
              # if not NaN, increment "count" by 1
            count += 1              
    return count
  
print(approach_1(ex1))
print(approach_1(ex2))


Python3
import numpy as np
  
ex3 = np.array([[3, 4, -390, np.nan], 
                [np.nan, np.nan, np.nan, -90]])
  
def approach_2(data):
    return np.sum(~np.isnan(data))
  
print(approach_2(ex3))


Python3
import numpy as np
  
ex4 = np.array([[0.35834379, 0.67202438, np.nan, np.nan,
                 np.nan, 0.47870971],
                [np.nan, np.nan, np.nan, 0.08113384,
                 0.70511741, 0.15260996],
                [0.09028477, np.nan, 0.16639899,
                    0.47740582, 0.7259116,  0.94797347],
                [0.80305651,     np.nan, 0.67949724,
                    0.84112054, 0.15951702, 0.07510587],
                [0.28643337, 0.00804256, 0.36775056,
                 0.19360266, 0.07288145, 0.37076932]])
  
def approach_3(data):
    return data.size - np.count_nonzero(np.isnan(data))
  
print(approach_3(ex4))


输出:

3
5

方法二:使用 isnan()

使用 NumPy 数组的功能,我们可以一次对整个数组而不是单个元素执行操作。

使用的函数:

  • np.isnan(data):对数组的条目、data 执行 np.isnan() 操作后返回一个布尔数组
  • np.sum():由于我们向 sum函数输入一个布尔数组,它返回布尔数组中真值(1s)的数量。

蟒蛇3

import numpy as np
  
ex3 = np.array([[3, 4, -390, np.nan], 
                [np.nan, np.nan, np.nan, -90]])
  
def approach_2(data):
    return np.sum(~np.isnan(data))
  
print(approach_2(ex3))

输出:

4

方法 3:使用np.count_nonzero()函数

numpy.count_nonzero()函数计算数组 arr 中非零值的数量。

蟒蛇3

import numpy as np
  
ex4 = np.array([[0.35834379, 0.67202438, np.nan, np.nan,
                 np.nan, 0.47870971],
                [np.nan, np.nan, np.nan, 0.08113384,
                 0.70511741, 0.15260996],
                [0.09028477, np.nan, 0.16639899,
                    0.47740582, 0.7259116,  0.94797347],
                [0.80305651,     np.nan, 0.67949724,
                    0.84112054, 0.15951702, 0.07510587],
                [0.28643337, 0.00804256, 0.36775056,
                 0.19360266, 0.07288145, 0.37076932]])
  
def approach_3(data):
    return data.size - np.count_nonzero(np.isnan(data))
  
print(approach_3(ex4))

输出:

22