Mahotas – Haralick 功能
在本文中,我们将了解如何在 mahotas 中获取图像的 haralick 特征。 Haralick 纹理特征是根据灰度共现矩阵 (GLCM) 计算的,该矩阵计算图像中相邻灰度的共现。 GLCM 是一个方阵,其维度为感兴趣区域 (ROI) 中的灰度级数 N。为此,我们将使用来自核分割基准的荧光显微镜图像。我们可以在下面给出的命令的帮助下获取图像
mahotas.demos.nuclear_image()
下面是nuclear_image
为此,我们将使用 mahotas.features.haralick 方法
Syntax : mahotas.features.haralick(img)
Argument : It takes image object as argument
Return : It returns numpy.ndarray
注意: this 的输入应该是过滤后的图像或加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
示例 1:
Python3
# importing various libraries
import mahotas
import mahotas.demos
import mahotas as mh
import numpy as np
from pylab import imshow, show
# loading nuclear image
nuclear = mahotas.demos.nuclear_image()
# filtering image
nuclear = nuclear[:, :, 0]
# adding gaussian filter
nuclear = mahotas.gaussian_filter(nuclear, 4)
# setting threshold
threshed = (nuclear > nuclear.mean())
# making is labeled image
labeled, n = mahotas.label(threshed)
# showing image
print("Labelled Image")
imshow(labeled)
show()
# getting haralick features
h_feature = mahotas.features.haralick(labelled)
# showing the feature
print("Haralick Features")
imshow(h_feature)
show()
Python3
# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
# loading image
img = mahotas.imread('dog_image.png')
# filtering the image
img = img[:, :, 0]
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 15)
# setting threshold value
gaussian = (gaussian > gaussian.mean())
# making is labelled image
labeled, n = mahotas.label(gaussian)
# showing image
print("Labelled Image")
imshow(labelled)
show()
# getting haralick features
h_feature = mahotas.features.haralick(labelled)
# showing the feature
print("Haralick Features")
imshow(h_feature)
show()
输出 :
示例 2:
Python3
# importing required libraries
import numpy as np
import mahotas
from pylab import imshow, show
# loading image
img = mahotas.imread('dog_image.png')
# filtering the image
img = img[:, :, 0]
# setting gaussian filter
gaussian = mahotas.gaussian_filter(img, 15)
# setting threshold value
gaussian = (gaussian > gaussian.mean())
# making is labelled image
labeled, n = mahotas.label(gaussian)
# showing image
print("Labelled Image")
imshow(labelled)
show()
# getting haralick features
h_feature = mahotas.features.haralick(labelled)
# showing the feature
print("Haralick Features")
imshow(h_feature)
show()
输出 :