Python中的 tensorflow.math.special.expint()函数
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
expint()函数
expint()用于计算 x 的逐元素指数积分。它被定义为 exp(t) / t 从 -inf 到 x 的积分,定义域为所有正实数。
Syntax: tensorflow.math.special.expint( x, name)
Parameter:
- x: It’s a Tensor or Sparse Tensor. Allowed dtypes are float32 and float64.
- name(optional): It defines name for the operation.
Returns: It returns a Tensor of same dtype as x.
示例 1:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([ [-5, -7],[ 2, 0]], dtype=tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.special.expint(a)
# Printing the result
print('Result: ', res)
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype=tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.special.expint(a)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor(
[[-5. -7.]
[ 2. 0.]], shape=(2, 2), dtype=float64)
Result: tf.Tensor(
[[ nan nan]
[4.95423436 -inf]], shape=(2, 2), dtype=float64)
示例 2:
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
a = tf.constant([1, 2, 3, 4, 5], dtype=tf.float64)
# Printing the input tensor
print('a: ', a)
# Calculating result
res = tf.math.special.expint(a)
# Printing the result
print('Result: ', res)
输出:
a: tf.Tensor([1. 2. 3. 4. 5.], shape=(5,), dtype=float64)
Result: tf.Tensor([ 1.89511782 4.95423436 9.93383257 19.63087447 40.18527536], shape=(5,), dtype=float64)