📜  PyTorch-使用修道院的序列处理

📅  最后修改于: 2020-12-10 05:25:33             🧑  作者: Mango


在本章中,我们提出了一种替代方法,该方法替代地依赖于跨两个序列的单个2D卷积神经网络。我们网络的每一层都根据到目前为止产生的输出序列对源令牌重新编码。因此,在网络中普遍存在类似注意力的属性。

在这里,我们将重点介绍根据数据集中包含的值创建具有特定池的顺序网络。此过程也最好在“图像识别模块”中应用。

顺序网络

以下步骤用于使用PyTorch创建具有修道院的序列处理模型-

第1步

导入必要的模块以使用修道院进行序列处理。

import keras 
from keras.datasets import mnist 
from keras.models import Sequential 
from keras.layers import Dense, Dropout, Flatten 
from keras.layers import Conv2D, MaxPooling2D 
import numpy as np

第2步

使用以下代码执行必要的操作以按照相应的顺序创建模式-

batch_size = 128 
num_classes = 10 
epochs = 12
# input image dimensions 
img_rows, img_cols = 28, 28
# the data, split between train and test sets 
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000,28,28,1) 
x_test = x_test.reshape(10000,28,28,1)
print('x_train shape:', x_train.shape) 
print(x_train.shape[0], 'train samples') 
print(x_test.shape[0], 'test samples')
y_train = keras.utils.to_categorical(y_train, num_classes) 
y_test = keras.utils.to_categorical(y_test, num_classes)

第三步

编译模型并将模型拟合到上述常规神经网络模型中,如下所示-

model.compile(loss = 
keras.losses.categorical_crossentropy, 
optimizer = keras.optimizers.Adadelta(), metrics = 
['accuracy'])
model.fit(x_train, y_train, 
batch_size = batch_size, epochs = epochs, 
verbose = 1, validation_data = (x_test, y_test)) 
score = model.evaluate(x_test, y_test, verbose = 0) 
print('Test loss:', score[0]) 
print('Test accuracy:', score[1])

生成的输出如下-

神经网络模型