如何转换 Pandas 数据框列中的索引?
数据帧中的每一行(即 level=0)都有一个索引值,即从 0 到 n-1 索引位置的值,并且有很多方法可以将这些索引值转换为 pandas 数据帧中的列。首先,让我们创建一个 Pandas 数据框。在这里,我们将创建一个关于学生在特定科目中的分数的 Pandas 数据框,其中列有卷号、姓名、分数、成绩和科目。
例子:
Python3
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# Printing the dataframe
AB
Python3
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# Adding a new index column to existing
# data frame and passing index value
AB['index'] = AB.index
# Printing the dataframe
AB
Python3
#CREATING A DATAFRAME FOR STUDENTS PORTFOLIO
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250', '9917102203', '9917102204','9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA', 'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems', 'Operating Systems', 'Operating Systems','Operating Systems']})
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# USING RESET_INDEX METHOD
# Adding a new index column to AB dataframe
AB.reset_index(level=0, inplace=True)
# HIDING THE DEFAULT INDEX VALUES AND
# PRINTING DATAFRAME
print( AB.to_string(index=False))
Python3
# importing the pandas library as pd
import pandas as pd
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
('E5','ECE'),
('E6','ECE'),
('E7','ECE'),
('E8','ECE')],
names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
index=new_index)
# MAKING MULTI INDEX NOW A PART OF COLUMN
# OF DATAFRAME
AB.reset_index(inplace=True)
AB
Python3
# importing the pandas library as pd
import pandas as pd
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
('E5','ECE'),
('E6','ECE'),
('E7','ECE'),
('E8','ECE')],
names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
index=new_index)
# MAKING SPECIFIC COLUMN OF MULTI INDEX
# NOW A PART OF COLUMN OF DATAFRAME
AB.reset_index(inplace=True,level=['BATCH'])
# BATCH INDEX IS NOW A COLUMN OF DATAFRAME
AB
输出:
方法一:新建索引列
在这里,我们将学习在现有数据框中创建一个新列作为索引,并将每一行的索引值(级别 = 0)添加到该列。
Python3
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# Adding a new index column to existing
# data frame and passing index value
AB['index'] = AB.index
# Printing the dataframe
AB
输出:
在这里,我们使用数据帧中每一行的索引值作为参数值,将新列“索引”添加到“AB”数据帧,并将索引转换为列。
方法二:使用reset_index()方法和to_string()方法
在这里,我们将使用 reset_index() 方法将索引转换为列以及 inplace 参数以连续反映更改,并且我们将使用 to_string() 方法在打印数据帧时隐藏默认显示的索引值。
Python3
#CREATING A DATAFRAME FOR STUDENTS PORTFOLIO
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250', '9917102203', '9917102204','9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA', 'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems', 'Operating Systems', 'Operating Systems','Operating Systems']})
# importing the pandas library as pd
import pandas as pd
# Creating the dataframe Ab
AB = pd.DataFrame({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# USING RESET_INDEX METHOD
# Adding a new index column to AB dataframe
AB.reset_index(level=0, inplace=True)
# HIDING THE DEFAULT INDEX VALUES AND
# PRINTING DATAFRAME
print( AB.to_string(index=False))
输出:
在这里,我们将 reset_index 方法应用于给定的数据帧,并通过将其作为参数传递给 to_string 方法来设置默认索引值(等于 0)。
方法3:使用multi_index
在这里,我们将学习从具有多索引的数据框中创建列。
示例 1:对于列的多索引
Python3
# importing the pandas library as pd
import pandas as pd
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
('E5','ECE'),
('E6','ECE'),
('E7','ECE'),
('E8','ECE')],
names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
index=new_index)
# MAKING MULTI INDEX NOW A PART OF COLUMN
# OF DATAFRAME
AB.reset_index(inplace=True)
AB
输出:
示例 2:用于将多索引中的特定列作为数据框的列
Python3
# importing the pandas library as pd
import pandas as pd
# ADDING MULTI INDEX TO DATA FRAME
new_index = pd.MultiIndex.from_tuples([('E4','ECE'),
('E5','ECE'),
('E6','ECE'),
('E7','ECE'),
('E8','ECE')],
names=['BATCH','BRANCH'])
# Creating the dataframe AB
data =({'Roll Number': ['9917102206', '9917102250',
'9917102203', '9917102204',
'9917102231'],
'Name': ['TANYA', 'PREETIKA', 'KUSHAGRA',
'PRAKHAR','ASHISH'],
'Score': [99, 98, 50, 45,97],
'Grade': ['A+', 'A+', 'C+', 'C','A'],
'Subject': ['Operating Systems', 'Operating Systems',
'Operating Systems', 'Operating Systems',
'Operating Systems']})
# COMBING DATA FRAME AND MULTI INDEX
# VALUES AND FORMING DATA FRAME
AB = pd.DataFrame(data, columns = ['Roll Number','Name','Score','Grade','Subject'],
index=new_index)
# MAKING SPECIFIC COLUMN OF MULTI INDEX
# NOW A PART OF COLUMN OF DATAFRAME
AB.reset_index(inplace=True,level=['BATCH'])
# BATCH INDEX IS NOW A COLUMN OF DATAFRAME
AB
输出: