股票买入卖出以最大化利润的 C++ 程序
股票每天的成本以数组的形式给出,找出你在那些日子里通过买卖可以获得的最大利润。例如,如果给定数组是 {100, 180, 260, 310, 40, 535, 695},则可以通过在第 0 天买入,在第 3 天卖出来获得最大利润。再次在第 4 天买入并在第 6 天卖出. 如果给定的价格数组按降序排序,则根本无法赚取利润。
幼稚的方法:一种简单的方法是尝试在获利的每一天买入股票并卖出,并不断更新迄今为止的最大利润。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
// Function to return the maximum profit
// that can be made after buying and
// selling the given stocks
int maxProfit(int price[],
int start, int end)
{
// If the stocks can't be bought
if (end <= start)
return 0;
// Initialise the profit
int profit = 0;
// The day at which the stock
// must be bought
for (int i = start; i < end; i++)
{
// The day at which the
// stock must be sold
for (int j = i + 1; j <= end; j++)
{
// If buying the stock at ith day and
// selling it at jth day is profitable
if (price[j] > price[i])
{
// Update the current profit
int curr_profit = price[j] - price[i] +
maxProfit(price,
start, i - 1) +
maxProfit(price,
j + 1, end);
// Update the maximum profit so far
profit = max(profit, curr_profit);
}
}
}
return profit;
}
// Driver code
int main()
{
int price[] = {100, 180, 260, 310,
40, 535, 695};
int n = sizeof(price) / sizeof(price[0]);
cout << maxProfit(price, 0, n - 1);
return 0;
}
C++
// C++ Program to find best buying
// and selling days
#include
using namespace std;
// This function finds the buy sell
// schedule for maximum profit
void stockBuySell(int price[], int n)
{
// Prices must be given for at
// least two days
if (n == 1)
return;
// Traverse through given price array
int i = 0;
while (i < n - 1)
{
// Find Local Minima
// Note that the limit is (n-2) as we are
// comparing present element to the next element
while ((i < n - 1) &&
(price[i + 1] <= price[i]))
i++;
// If we reached the end, break
// as no further solution possible
if (i == n - 1)
break;
// Store the index of minima
int buy = i++;
// Find Local Maxima
// Note that the limit is (n-1) as we are
// comparing to previous element
while ((i < n) &&
(price[i] >= price[i - 1]))
i++;
// Store the index of maxima
int sell = i - 1;
cout << "Buy on day: " << buy
<< " Sell on day: " <<
sell << endl;
}
}
// Driver code
int main()
{
// Stock prices on consecutive days
int price[] = {100, 180, 260,
310, 40, 535, 695};
int n = sizeof(price) / sizeof(price[0]);
// Function call
stockBuySell(price, n);
return 0;
}
// This is code is contributed by rathbhupendra
C++
// C++ program to implement
// the above approach
#include
using namespace std;
// Preprocessing helps the code
// run faster
#define fl(i, a, b)
for (int i = a; i < b; i++)
// Function that return
int maxProfit(int* prices, int size)
{
// maxProfit adds up the difference
// between adjacent elements if they
// are in increasing order
int maxProfit = 0;
// The loop starts from 1 as its
// comparing with the previous
fl(i, 1, size) if (prices[i] > prices[i - 1]) maxProfit
+= prices[i] - prices[i - 1];
return maxProfit;
}
// Driver code
int main()
{
int prices[] = {100, 180, 260,
310, 40, 535, 695};
int N = sizeof(prices) / sizeof(prices[0]);
cout << maxProfit(prices, N) << endl;
return 0;
}
// This code is contributed by Kingshuk Deb
输出:
865
有效的方法:如果我们只允许买卖一次,那么我们可以使用以下算法。两个元素之间的最大差异。在这里,我们可以多次买卖。
下面是这个问题的算法。
- 找到局部最小值并将其存储为起始索引。如果不存在,则返回。
- 找到局部最大值。并将其存储为结束索引。如果我们到达结尾,则将结尾设置为结束索引。
- 更新解决方案(增加买卖对的计数)
- 如果没有到达终点,重复上述步骤。
C++
// C++ Program to find best buying
// and selling days
#include
using namespace std;
// This function finds the buy sell
// schedule for maximum profit
void stockBuySell(int price[], int n)
{
// Prices must be given for at
// least two days
if (n == 1)
return;
// Traverse through given price array
int i = 0;
while (i < n - 1)
{
// Find Local Minima
// Note that the limit is (n-2) as we are
// comparing present element to the next element
while ((i < n - 1) &&
(price[i + 1] <= price[i]))
i++;
// If we reached the end, break
// as no further solution possible
if (i == n - 1)
break;
// Store the index of minima
int buy = i++;
// Find Local Maxima
// Note that the limit is (n-1) as we are
// comparing to previous element
while ((i < n) &&
(price[i] >= price[i - 1]))
i++;
// Store the index of maxima
int sell = i - 1;
cout << "Buy on day: " << buy
<< " Sell on day: " <<
sell << endl;
}
}
// Driver code
int main()
{
// Stock prices on consecutive days
int price[] = {100, 180, 260,
310, 40, 535, 695};
int n = sizeof(price) / sizeof(price[0]);
// Function call
stockBuySell(price, n);
return 0;
}
// This is code is contributed by rathbhupendra
输出:
Buy on day: 0 Sell on day: 3
Buy on day: 4 Sell on day: 6
时间复杂度:外循环一直运行到我变成 n-1。内部两个循环在每次迭代中增加 I 的值。所以整体时间复杂度是 O(n)
谷峰方法:
在这种方法中,我们只需要找到下一个更大的元素并将其从当前元素中减去,这样差异就会不断增加,直到达到最小值。如果序列是递减序列,则可能的最大利润为 0。
C++
// C++ program to implement
// the above approach
#include
using namespace std;
// Preprocessing helps the code
// run faster
#define fl(i, a, b)
for (int i = a; i < b; i++)
// Function that return
int maxProfit(int* prices, int size)
{
// maxProfit adds up the difference
// between adjacent elements if they
// are in increasing order
int maxProfit = 0;
// The loop starts from 1 as its
// comparing with the previous
fl(i, 1, size) if (prices[i] > prices[i - 1]) maxProfit
+= prices[i] - prices[i - 1];
return maxProfit;
}
// Driver code
int main()
{
int prices[] = {100, 180, 260,
310, 40, 535, 695};
int N = sizeof(prices) / sizeof(prices[0]);
cout << maxProfit(prices, N) << endl;
return 0;
}
// This code is contributed by Kingshuk Deb
输出:
865
时间复杂度:O(n)
辅助空间: O(1)
请参阅完整的股票买卖以最大化利润的文章了解更多详情!