📜  Python中的 Pandas 分析

📅  最后修改于: 2022-05-13 01:54:57.112000             🧑  作者: Mango

Python中的 Pandas 分析

Python中的 pandas_profiling 库包含一个名为 ProfileReport() 的方法,该方法在输入 DataFrame 上生成基本报告。

该报告包括以下内容:

  • 数据框概述,
  • 定义 DataFrame 的每个属性,
  • 属性之间的相关性(Pearson 相关性和 Spearman 相关性),以及
  • DataFrame 示例。

句法 :

pandas_profiling.ProfileReport(df, **kwargs)
Arguments                                                                   Type                                                  Description
dfDataFrameData to be analyzed
binsintNumber of bins in histogram. The default is 10.
check_correlationbooleanWhether or not to check correlation. It’s `True` by default.
correlation_thresholdfloatThreshold to determine if the variable pair is correlated. The default is 0.9.
correlation_overrideslistVariable names not to be rejected because they are correlated. There is no variable in the list (`None`) by default.
check_recodedbooleanWhether or not to check recoded correlation (memory heavy feature). Since it’s an expensive computation it can be activated for small datasets. `check_correlation` must be true to disable this check. It’s `False` by default.
pool_sizeintNumber of workers in thread pool. The default is equal to the number of CPU.

例子:

Python3
# importing packages
import pandas as pd
import pandas_profiling as pp
  
  
# dictionary of data
dct = {'ID': {0: 23, 1: 43, 2: 12, 3: 13, 
              4: 67, 5: 89, 6: 90, 7: 56, 
              8: 34}, 
       'Name': {0: 'Ram', 1: 'Deep', 2: 'Yash',
                3: 'Aman', 4: 'Arjun', 5: 'Aditya',
                6: 'Divya', 7: 'Chalsea',
                8: 'Akash' }, 
       'Marks': {0: 89, 1: 97, 2: 45, 3: 78,
                 4: 56, 5: 76, 6: 100, 7: 87,
                 8: 81}, 
       'Grade': {0: 'B', 1: 'A', 2: 'F', 3: 'C',
                 4: 'E', 5: 'C', 6: 'A', 7: 'B',
                 8: 'B'}
      }
  
# forming dataframe and printing
data = pd.DataFrame(dct)
print(data)
  
# forming ProfileReport and save
# as output.html file
profile = pp.ProfileReport(data)
profile.to_file("output.html")


输出:

数据框

名为 output.html 的 html 文件如下: