📜  Python| numpy.cov()函数

📅  最后修改于: 2022-05-13 01:55:37.658000             🧑  作者: Mango

Python| numpy.cov()函数

协方差提供了两个变量或更多变量集之间相关强度的度量。协方差矩阵元素C ij是xi 和xj 的协方差。元素 Cii 是 xi 的方差。

  • 如果 COV(xi, xj) = 0 则变量不相关
  • 如果 COV(xi, xj) > 0 则变量正相关
  • 如果 COV(xi, xj) > < 0 则变量负相关

示例 #1:

Python3
# Python code to demonstrate the
# use of numpy.cov
import numpy as np
 
x = np.array([[0, 3, 4], [1, 2, 4], [3, 4, 5]])
 
print("Shape of array:\n", np.shape(x))
 
print("Covariance matrix of x:\n", np.cov(x))


Python3
# Python code to demonstrate the
# use of numpy.cov
import numpy as np
 
x = [1.23, 2.12, 3.34, 4.5]
 
y = [2.56, 2.89, 3.76, 3.95]
 
# find out covariance with respect  columns
cov_mat = np.stack((x, y), axis = 0)
 
print(np.cov(cov_mat))


Python3
# Python code to demonstrate the
# use of numpy.cov
import numpy as np
 
x = [1.23, 2.12, 3.34, 4.5]
 
y = [2.56, 2.89, 3.76, 3.95]
 
# find out covariance with respect  rows
cov_mat = np.stack((x, y), axis = 1)
 
print("shape of matrix x and y:", np.shape(cov_mat))
 
print("shape of covariance matrix:", np.shape(np.cov(cov_mat)))
 
print(np.cov(cov_mat))


输出:  

Shape of array:
 (3, 3)
Covariance matrix of x:
 [[ 4.33333333  2.83333333  2.        ]
 [ 2.83333333  2.33333333  1.5       ]
 [ 2.          1.5         1.        ]]

示例 #2:

Python3

# Python code to demonstrate the
# use of numpy.cov
import numpy as np
 
x = [1.23, 2.12, 3.34, 4.5]
 
y = [2.56, 2.89, 3.76, 3.95]
 
# find out covariance with respect  columns
cov_mat = np.stack((x, y), axis = 0)
 
print(np.cov(cov_mat))
输出:
[[ 2.03629167  0.9313    ]
 [ 0.9313      0.4498    ]]

示例#3:

Python3

# Python code to demonstrate the
# use of numpy.cov
import numpy as np
 
x = [1.23, 2.12, 3.34, 4.5]
 
y = [2.56, 2.89, 3.76, 3.95]
 
# find out covariance with respect  rows
cov_mat = np.stack((x, y), axis = 1)
 
print("shape of matrix x and y:", np.shape(cov_mat))
 
print("shape of covariance matrix:", np.shape(np.cov(cov_mat)))
 
print(np.cov(cov_mat))
输出:
shape of matrix x and y: (4, 2)
shape of covariance matrix: (4, 4)
[[ 0.88445  0.51205  0.2793  -0.36575]
 [ 0.51205  0.29645  0.1617  -0.21175]
 [ 0.2793   0.1617   0.0882  -0.1155 ]
 [-0.36575 -0.21175 -0.1155   0.15125]]