Python中的 Matplotlib.axes.Axes.inset_axes()
Matplotlib是Python中的一个库,它是 NumPy 库的数值数学扩展。 Axes 类包含大部分图形元素:Axis、Tick、Line2D、Text、Polygon 等,并设置坐标系。 Axes 的实例通过回调属性支持回调。
matplotlib.axes.Axes.inset_axes()函数
matplotlib 库的 axes 模块中的Axes.inset_axes()函数也用于向现有轴添加子插入轴。
Syntax: Axes.inset_axes(self, bounds, *, transform=None, zorder=5, **kwargs)
Parameters: This method accept the following parameters that are described below:
- bounds: This parameter is the Lower-left corner of inset axes, and its width and
height.[x0, y0, width, height]
- transform: This parameter is the units of rect are in axes-relative coordinates.
- zorder: This parameter contains the number and its default value is 5.
Returns: This method returns the ax which is the created Axes instance.
注意:此函数适用于 Matplotlib 版本 >= 3.0
下面的示例说明了 matplotlib.axes 中的 matplotlib.axes.Axes.inset_axes()函数:
示例 1:
# Implementation of matplotlib function
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(range(10))
axin1 = ax.inset_axes([0.8, 0.1,
0.15, 0.15])
axin2 = ax.inset_axes(
[5, 7, 2.3, 2.3], transform = ax.transData)
ax.set_title('matplotlib.axes.Axes.inset_axes() Example',
fontsize = 14, fontweight ='bold')
plt.show()
输出:
示例 2:
# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
def geeks():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data("axes_grid / bivariate_normal.npy",
asfileobj = False)
z = np.load(f)
return z, (-3, 4, -4, 3)
fig, ax = plt.subplots()
X, extent = geeks()
Z2 = np.zeros([150, 150], dtype ="g")
ny, nx = X.shape
Z2[30:30 + ny, 30:30 + nx] = X
ax.imshow(Z2, extent = extent,
interpolation ="nearest",
origin ="lower", cmap ="Greens")
axins = ax.inset_axes([0.5, 0.5, 0.47, 0.47])
axins.imshow(Z2, extent = extent,
interpolation ="nearest",
origin ="lower", cmap ="Greens")
x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9
axins.set_xlim(x1, x2)
axins.set_ylim(y1, y2)
ax.indicate_inset_zoom(axins)
ax.set_title('matplotlib.axes.Axes.inset_axes() Example',
fontsize = 14, fontweight ='bold')
plt.show()
输出: