打印二叉树的两个给定级别数之间的节点
给定一棵二叉树和两个级别数“低”和“高”,从低级别打印节点到高级别。
For example consider the binary tree given in below diagram.
Input: Root of below tree, low = 2, high = 4
Output:
8 22
4 12
10 14
一个简单的方法是首先编写一个递归函数来打印给定级别编号的节点。然后从低到高循环调用递归函数。该方法的时间复杂度为 O(n 2 )
我们可以使用基于队列的迭代级顺序遍历在 O(n) 时间内打印节点。这个想法是做简单的基于队列的级别顺序遍历。在进行中序遍历时,在末尾添加一个标记节点。每当我们看到标记节点时,我们都会增加级别数。如果级别数介于低和高之间,则打印节点。
以下是上述思想的实现。
C++
// A C++ program to print Nodes level by level between given two levels.
#include
using namespace std;
/* A binary tree Node has key, pointer to left and right children */
struct Node
{
int key;
struct Node* left, *right;
};
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
void printLevels(Node* root, int low, int high)
{
queue Q;
Node *marker = new Node; // Marker node to indicate end of level
int level = 1; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.push(root);
Q.push(marker);
// Simple level order traversal loop
while (Q.empty() == false)
{
// Remove the front item from queue
Node *n = Q.front();
Q.pop();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
cout << endl;
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.empty() == true || level > high) break;
// Enqueue the marker for end of next level
Q.push(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
cout << n->key << " ";
// Enqueue children of non-marker node
if (n->left != NULL) Q.push(n->left);
if (n->right != NULL) Q.push(n->right);
}
}
/* Helper function that allocates a new Node with the
given key and NULL left and right pointers. */
Node* newNode(int key)
{
Node* temp = new Node;
temp->key = key;
temp->left = temp->right = NULL;
return (temp);
}
/* Driver program to test above functions*/
int main()
{
// Let us construct the BST shown in the above figure
struct Node *root = newNode(20);
root->left = newNode(8);
root->right = newNode(22);
root->left->left = newNode(4);
root->left->right = newNode(12);
root->left->right->left = newNode(10);
root->left->right->right = newNode(14);
cout << "Level Order traversal between given two levels is";
printLevels(root, 2, 3);
return 0;
}
Java
// Java program to print Nodes level by level between given two levels
import java.util.LinkedList;
import java.util.Queue;
/* A binary tree Node has key, pointer to left and right children */
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree
{
Node root;
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
void printLevels(Node node, int low, int high)
{
Queue Q = new LinkedList<>();
Node marker = new Node(4); // Marker node to indicate end of level
int level = 1; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.add(node);
Q.add(marker);
// Simple level order traversal loop
while (Q.isEmpty() == false)
{
// Remove the front item from queue
Node n = Q.peek();
Q.remove();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
System.out.println("");
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.isEmpty() == true || level > high)
break;
// Enqueue the marker for end of next level
Q.add(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
System.out.print( n.data + " ");
// Enqueue children of non-marker node
if (n.left != null)
Q.add(n.left);
if (n.right != null)
Q.add(n.right);
}
}
// Driver program to test for above functions
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.right = new Node(22);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
System.out.print("Level Order traversal between given two levels is ");
tree.printLevels(tree.root, 2, 3);
}
}
// This code has been contributed by Mayank Jaiswal
Python3
# Python program to print nodes level by level between
# given two levels
# A binary tree node
class Node:
# Constructor to create a new node
def __init__(self, key):
self.key = key
self.left = None
self.right = None
# Given a binary tree, print nodes form level number 'low'
# to level number 'high'
def printLevels(root, low, high):
Q = []
marker = Node(11114) # Marker node to indicate end of level
level = 1 # Initialize level number
# Enqueue the only first level node and marker node for
# end of level
Q.append(root)
Q.append(marker)
#print Q
# Simple level order traversal loop
while(len(Q) >0):
# Remove the front item from queue
n = Q[0]
Q.pop(0)
#print Q
# Check if end of level is reached
if n == marker:
# print a new line and increment level number
print()
level += 1
# Check if marker node was last node in queue
# or level number is beyond the given upper limit
if len(Q) == 0 or level > high:
break
# Enqueue the marker for end of next level
Q.append(marker)
# If this is marker, then we don't need print it
# and enqueue its children
continue
if level >= low:
print (n.key,end=" ")
# Enqueue children of non-marker node
if n.left is not None:
Q.append(n.left)
Q.append(n.right)
# Driver program to test the above function
root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
print ("Level Order Traversal between given two levels is",printLevels(root,2,3))
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
using System;
using System.Collections.Generic;
// c# program to print Nodes level by level between given two levels
/* A binary tree Node has key, pointer to left and right children */
public class Node
{
public int data;
public Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class BinaryTree
{
public Node root;
/* Given a binary tree, print nodes from level number 'low' to level
number 'high'*/
public virtual void printLevels(Node node, int low, int high)
{
LinkedList Q = new LinkedList();
Node marker = new Node(4); // Marker node to indicate end of level
int level = 1; // Initialize level number
// Enqueue the only first level node and marker node for end of level
Q.AddLast(node);
Q.AddLast(marker);
// Simple level order traversal loop
while (Q.Count > 0)
{
// Remove the front item from queue
Node n = Q.First.Value;
Q.RemoveFirst();
// Check if end of level is reached
if (n == marker)
{
// print a new line and increment level number
Console.WriteLine("");
level++;
// Check if marker node was last node in queue or
// level number is beyond the given upper limit
if (Q.Count == 0 || level > high)
{
break;
}
// Enqueue the marker for end of next level
Q.AddLast(marker);
// If this is marker, then we don't need print it
// and enqueue its children
continue;
}
// If level is equal to or greater than given lower level,
// print it
if (level >= low)
{
Console.Write(n.data + " ");
}
// Enqueue children of non-marker node
if (n.left != null)
{
Q.AddLast(n.left);
}
if (n.right != null)
{
Q.AddLast(n.right);
}
}
}
// Driver program to test for above functions
public static void Main(string[] args)
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(20);
tree.root.left = new Node(8);
tree.root.right = new Node(22);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(12);
tree.root.left.right.left = new Node(10);
tree.root.left.right.right = new Node(14);
Console.Write("Level Order traversal between given two levels is ");
tree.printLevels(tree.root, 2, 3);
}
}
// This code is contributed by Shrikant13
Javascript
输出
Level Order traversal between given two levels is
8 22
4 12
上述方法的时间复杂度为 O(n),因为它进行了简单的级别顺序遍历。