Python中的 numpy.ones_like()
numpy.one_like()函数返回一个给定形状和类型的数组作为给定数组,带有一个。
Syntax: numpy.ones_like(array, dtype = None, order = 'K', subok = True)
参数 :
array : array_like input
subok : [optional, boolean]If true, then newly created array will be sub-class of array;
otherwise, a base-class array
order : C_contiguous or F_contiguous
C-contiguous order in memory(last index varies the fastest)
C order means that operating row-wise on the array will be slightly quicker
FORTRAN-contiguous order in memory (first index varies the fastest).
F order means that column-wise operations will be faster.
dtype : [optional, float(byDefault)] Data type of returned array.
返回:
ndarray of ones having given shape, order and datatype.
# Python Programming illustrating
# numpy.ones_like method
import numpy as geek
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
b = geek.ones_like(array, float)
print("\nMatrix b : \n", b)
array = geek.arange(8)
c = geek.ones_like(array)
print("\nMatrix c : \n", c)
输出:
Original array :
[[0 1]
[2 3]
[4 5]
[6 7]
[8 9]]
Matrix b :
[[ 1. 1.]
[ 1. 1.]
[ 1. 1.]
[ 1. 1.]
[ 1. 1.]]
Matrix c :
[1 1 1 1 1 1 1 1]
参考 :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.ones_like.html
笔记 :
此外,这些代码不会在 online-ID 上运行。请在您的系统上运行它们以探索工作