📜  Python中的 numpy.ones_like()

📅  最后修改于: 2022-05-13 01:54:46.802000             🧑  作者: Mango

Python中的 numpy.ones_like()

numpy.one_like()函数返回一个给定形状和类型的数组作为给定数组,带有一个。

Syntax: numpy.ones_like(array, dtype = None, order = 'K', subok = True)

参数 :

array : array_like input
subok  : [optional, boolean]If true, then newly created array will be sub-class of array; 
                 otherwise, a base-class array
order  : C_contiguous or F_contiguous
         C-contiguous order in memory(last index varies the fastest)
         C order means that operating row-wise on the array will be slightly quicker
         FORTRAN-contiguous order in memory (first index varies the fastest).
         F order means that column-wise operations will be faster. 
dtype  : [optional, float(byDefault)] Data type of returned array.  

返回:

ndarray of ones having given shape, order and datatype.
# Python Programming illustrating
# numpy.ones_like method
  
import numpy as geek
  
array = geek.arange(10).reshape(5, 2)
print("Original array : \n", array)
  
  
b = geek.ones_like(array, float)
print("\nMatrix b : \n", b)
  
array = geek.arange(8)
c = geek.ones_like(array)
print("\nMatrix c : \n", c)

输出:

Original array : 
 [[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

Matrix b : 
 [[ 1.  1.]
 [ 1.  1.]
 [ 1.  1.]
 [ 1.  1.]
 [ 1.  1.]]

Matrix c : 
 [1 1 1 1 1 1 1 1]

参考 :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.ones_like.html
笔记 :
此外,这些代码不会在 online-ID 上运行。请在您的系统上运行它们以探索工作