Python中的 numpy.full_like()
numpy.full_like()函数返回一个与给定数组具有相同形状和类型的新数组。
句法 :
numpy.full_like(a, fill_value, dtype = None, order = 'K', subok = True)
参数 :
shape : Number of rows
order : C_contiguous or F_contiguous
dtype : [optional, float(by Default )] Data type of returned array.
subok : [bool, optional] to make subclass of a or not
返回:
ndarray
Python
# Python Programming illustrating
# numpy.full_like method
import numpy as geek
x = geek.arange(10, dtype = int).reshape(2, 5)
print("x before full_like : \n", x)
# using full_like
print("\nx after full_like : \n", geek.full_like(x, 10.0))
y = geek.arange(10, dtype = float).reshape(2, 5)
print("\n\ny before full_like : \n", x)
# using full_like
print("\ny after full_like : \n", geek.full_like(y, 0.01))
输出 :
x before full_like :
[[0 1 2 3 4]
[5 6 7 8 9]]
x after full_like :
[[10 10 10 10 10]
[10 10 10 10 10]]
y before full_like :
[[0 1 2 3 4]
[5 6 7 8 9]]
y after full_like :
[[ 0.01 0.01 0.01 0.01 0.01]
[ 0.01 0.01 0.01 0.01 0.01]]
参考 :
https://docs.scipy.org/doc/numpy/reference/generated/numpy.full_like.html#numpy.full_like
笔记 :
这些代码不会在在线 IDE 上运行。因此,请在您的系统上运行它们以探索其工作原理。