Python – tensorflow.concat()
TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
concat()用于沿一维连接张量。
Syntax: tensorflow.concat( values, axis, name )
Parameter:
- values: It is a tensor or list of tensor.
- axis: It is 0-D tensor which represents dimension to concatenate.
- name(optional): It defines the name for the operation.
Returns: It returns the concatenated Tensor.
示例 1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
# Printing the input tensor
print('t1: ', t1)
print('t2: ', t2)
# Calculating result
res = tf.concat([t1, t2], 2)
# Printing the result
print('Result: ', res)
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
# Printing the input tensor
print('t1: ', t1)
print('t2: ', t2)
# Calculating result
res = tf.concat([t1, t2], 1)
# Printing the result
print('Result: ', res)
输出:
t1: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2: [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
Result: tf.Tensor(
[[[ 1 2 7 4]
[ 3 4 8 4]]
[[ 5 6 2 10]
[ 7 8 15 11]]], shape=(2, 2, 4), dtype=int32)
示例 2:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
t1 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
# Printing the input tensor
print('t1: ', t1)
print('t2: ', t2)
# Calculating result
res = tf.concat([t1, t2], 1)
# Printing the result
print('Result: ', res)
输出:
t1: [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
t2: [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
Result: tf.Tensor(
[[[ 1 2]
[ 3 4]
[ 7 4]
[ 8 4]]
[[ 5 6]
[ 7 8]
[ 2 10]
[15 11]]], shape=(2, 4, 2), dtype=int32)