Python中的 numpy.quantile()
numpy.quantile(arr, q, axis = None)
:计算给定数据(数组元素)沿指定轴的第 q个分位数。
当处理正态分布时,分位数在统计中起着非常重要的作用。
在上图中, Q2
是正态分布数据的median
。 Q3 - Q2
表示给定数据集的分位数范围。
Parameters :
arr : [array_like]input array.
q : quantile value.
axis : [int or tuples of int]axis along which we want to calculate the quantile value. Otherwise, it will consider arr to be flattened(works on all the axis). axis = 0 means along the column and axis = 1 means working along the row.
out : [ndarray, optional]Different array in which we want to place the result. The array must have same dimensions as expected output.
Results : qth quantile of the array (a scalar value if axis is none) or array with quantile values along specified axis.
代码#1:
# Python Program illustrating
# numpy.quantile() method
import numpy as np
# 1D array
arr = [20, 2, 7, 1, 34]
print("arr : ", arr)
print("Q2 quantile of arr : ", np.quantile(arr, .50))
print("Q1 quantile of arr : ", np.quantile(arr, .25))
print("Q3 quantile of arr : ", np.quantile(arr, .75))
print("100th quantile of arr : ", np.quantile(arr, .1))
输出 :
arr : [20, 2, 7, 1, 34]
Q2 quantile of arr : 7.0)
Q1 quantile of arr : 2.0)
Q3 quantile of arr : 20.0)
100th quantile of arr : 1.4)
代码#2:
# Python Program illustrating
# numpy.quantile() method
import numpy as np
# 2D array
arr = [[14, 17, 12, 33, 44],
[15, 6, 27, 8, 19],
[23, 2, 54, 1, 4, ]]
print("\narr : \n", arr)
# quantile of the flattened array
print("\n50th quantile of arr, axis = None : ", np.quantile(arr, .50))
print("0th quantile of arr, axis = None : ", np.quantile(arr, 0))
# quantile along the axis = 0
print("\n50th quantile of arr, axis = 0 : ", np.quantile(arr, .25, axis = 0))
print("0th quantile of arr, axis = 0 : ", np.quantile(arr, 0, axis = 0))
# quantile along the axis = 1
print("\n50th quantile of arr, axis = 1 : ", np.quantile(arr, .50, axis = 1))
print("0th quantile of arr, axis = 1 : ", np.quantile(arr, 0, axis = 1))
print("\n0th quantile of arr, axis = 1 : \n",
np.quantile(arr, .50, axis = 1, keepdims = True))
print("\n0th quantile of arr, axis = 1 : \n",
np.quantile(arr, 0, axis = 1, keepdims = True))
输出 :
arr :
[[14, 17, 12, 33, 44], [15, 6, 27, 8, 19], [23, 2, 54, 1, 4]]
50th quantile of arr, axis = None : 15.0
0th quantile of arr, axis = None : 1)
50th quantile of arr, axis = 0 : [14.5 4. 19.5 4.5 11.5]
0th quantile of arr, axis = 0 : [14 2 12 1 4]
50th quantile of arr, axis = 1 : [17. 15. 4.]
0th quantile of arr, axis = 1 : [12 6 1]
0th quantile of arr, axis = 1 :
[[17.]
[15.]
[ 4.]]
0th quantile of arr, axis = 1 :
[[12]
[ 6]
[ 1]]