给定一棵二叉树,将其展平为一个链表。展平后,每个节点的左侧应指向NULL,右侧应按级别顺序包含下一个节点。
范例:
Input:
1
/ \
2 5
/ \ \
3 4 6
Output:
1
\
2
\
3
\
4
\
5
\
6
Input:
1
/ \
3 4
/
2
\
5
Output:
1
\
3
\
4
\
2
\
5
方法:一种方法使用递归已经在以前的文章中讨论。在这种方法中已经隐含了使用堆栈对二叉树进行预遍历。在此遍历中,每次将右子项推入堆栈中时,都会使右子项等于左子项,并使左子项等于NULL。如果节点的右子节点变为NULL,则会弹出堆栈,而右子节点将从堆栈中弹出的值。重复上述步骤,直到堆栈的大小为零或根为NULL。
下面是上述方法的实现:
C++
// C++ program to flatten the linked
// list using stack | set-2
#include
#include
using namespace std;
struct Node {
int key;
Node *left, *right;
};
/* utility that allocates a new Node
with the given key */
Node* newNode(int key)
{
Node* node = new Node;
node->key = key;
node->left = node->right = NULL;
return (node);
}
// To find the inorder traversal
void inorder(struct Node* root)
{
// base condition
if (root == NULL)
return;
inorder(root->left);
cout << root->key << " ";
inorder(root->right);
}
// Function to convert binary tree into
// linked list by altering the right node
// and making left node point to NULL
Node* solution(Node* A)
{
// Declare a stack
stack st;
Node* ans = A;
// Iterate till the stack is not empty
// and till root is Null
while (A != NULL || st.size() != 0) {
// Check for NULL
if (A->right != NULL) {
st.push(A->right);
}
// Make the Right Left and
// left NULL
A->right = A->left;
A->left = NULL;
// Check for NULL
if (A->right == NULL && st.size() != 0) {
A->right = st.top();
st.pop();
}
// Iterate
A = A->right;
}
return ans;
}
// Driver Code
int main()
{
/* 1
/ \
2 5
/ \ \
3 4 6 */
// Build the tree
Node* root = newNode(1);
root->left = newNode(2);
root->right = newNode(5);
root->left->left = newNode(3);
root->left->right = newNode(4);
root->right->right = newNode(6);
// Call the function to
// flatten the tree
root = solution(root);
cout << "The Inorder traversal after "
"flattening binary tree ";
// call the function to print
// inorder after flatenning
inorder(root);
return 0;
return 0;
}
Java
// Java program to flatten the linked
// list using stack | set-2
import java.util.Stack;
class GFG
{
static class Node
{
int key;
Node left, right;
}
/* utility that allocates a new Node
with the given key */
static Node newNode(int key)
{
Node node = new Node();
node.key = key;
node.left = node.right = null;
return (node);
}
// To find the inorder traversal
static void inorder(Node root)
{
// base condition
if (root == null)
return;
inorder(root.left);
System.out.print(root.key + " ");
inorder(root.right);
}
// Function to convert binary tree into
// linked list by altering the right node
// and making left node point to null
static Node solution(Node A)
{
// Declare a stack
Stack st = new Stack<>();
Node ans = A;
// Iterate till the stack is not empty
// and till root is Null
while (A != null || st.size() != 0)
{
// Check for null
if (A.right != null)
{
st.push(A.right);
}
// Make the Right Left and
// left null
A.right = A.left;
A.left = null;
// Check for null
if (A.right == null && st.size() != 0)
{
A.right = st.peek();
st.pop();
}
// Iterate
A = A.right;
}
return ans;
}
// Driver Code
public static void main(String[] args)
{
/* 1
/ \
2 5
/ \ \
3 4 6 */
// Build the tree
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(3);
root.left.right = newNode(4);
root.right.right = newNode(6);
// Call the function to
// flatten the tree
root = solution(root);
System.out.print("The Inorder traversal after "
+"flattening binary tree ");
// call the function to print
// inorder after flatenning
inorder(root);
}
}
// This code has been contributed by 29AjayKumar
Python3
# Python3 program to flatten the linked
# list using stack | set-2
class Node:
def __init__(self, key):
self.key = key
self.left = None
self.right = None
# Utility that allocates a new Node
# with the given key
def newNode(key):
node = Node(key)
node.key = key
node.left = node.right = None
return (node)
# To find the inorder traversal
def inorder(root):
# Base condition
if (root == None):
return
inorder(root.left)
print(root.key, end = ' ')
inorder(root.right)
# Function to convert binary tree into
# linked list by altering the right node
# and making left node point to None
def solution(A):
# Declare a stack
st = []
ans = A
# Iterate till the stack is not empty
# and till root is Null
while (A != None or len(st) != 0):
# Check for None
if (A.right != None):
st.append(A.right)
# Make the Right Left and
# left None
A.right = A.left
A.left = None
# Check for None
if (A.right == None and len(st) != 0):
A.right = st[-1]
st.pop()
# Iterate
A = A.right
return ans
# Driver Code
if __name__=='__main__':
''' 1
/ \
2 5
/ \ \
3 4 6 '''
# Build the tree
root = newNode(1)
root.left = newNode(2)
root.right = newNode(5)
root.left.left = newNode(3)
root.left.right = newNode(4)
root.right.right = newNode(6)
# Call the function to
# flatten the tree
root = solution(root)
print("The Inorder traversal after "
"flattening binary tree ",
end = '')
# Call the function to print
# inorder after flatenning
inorder(root)
# This code is contributed by rutvik_56
C#
// C# program to flatten the linked
// list using stack | set-2
using System;
using System.Collections.Generic;
class GFG
{
public class Node
{
public int key;
public Node left, right;
}
/* utility that allocates a new Node
with the given key */
static Node newNode(int key)
{
Node node = new Node();
node.key = key;
node.left = node.right = null;
return (node);
}
// To find the inorder traversal
static void inorder(Node root)
{
// base condition
if (root == null)
return;
inorder(root.left);
Console.Write(root.key + " ");
inorder(root.right);
}
// Function to convert binary tree into
// linked list by altering the right node
// and making left node point to null
static Node solution(Node A)
{
// Declare a stack
Stack st = new Stack();
Node ans = A;
// Iterate till the stack is not empty
// and till root is Null
while (A != null || st.Count != 0)
{
// Check for null
if (A.right != null)
{
st.Push(A.right);
}
// Make the Right Left and
// left null
A.right = A.left;
A.left = null;
// Check for null
if (A.right == null && st.Count != 0)
{
A.right = st.Peek();
st.Pop();
}
// Iterate
A = A.right;
}
return ans;
}
// Driver Code
public static void Main(String[] args)
{
/* 1
/ \
2 5
/ \ \
3 4 6 */
// Build the tree
Node root = newNode(1);
root.left = newNode(2);
root.right = newNode(5);
root.left.left = newNode(3);
root.left.right = newNode(4);
root.right.right = newNode(6);
// Call the function to
// flatten the tree
root = solution(root);
Console.Write("The Inorder traversal after "
+"flattening binary tree ");
// call the function to print
// inorder after flatenning
inorder(root);
}
}
// This code contributed by Rajput-Ji
输出:
The Inorder traversal after flattening binary tree 1 2 3 4 5 6
时间复杂度: O(N)
辅助空间: O(Log N)