二进制搜索树(BST)操作(如搜索,删除,插入)的最坏情况时间复杂度为O(n)。最坏的情况发生在树倾斜时。我们可以将最坏情况下的时间复杂度表示为带有AVL和红黑树的O(Logn)。
在实际情况下,我们能否比AVL或红黑树做得更好?
像AVL和Red-Black Trees一样,Splay树也是自平衡BST。展开树的主要思想是将最近访问的项带到树的根,这使得最近一次搜索的项在再次访问时可以在O(1)时间内访问。这个想法是使用引用的局部性(在典型的应用程序中,80%的访问权是20%的项)。想象一下这样一种情况:我们有数百万或数十亿个键,而只有很少的键被频繁访问,这在许多实际应用中都是很有可能的。
所有展开树操作平均运行时间为O(log n),其中n是树中的条目数。在最坏的情况下,任何单个操作都可能花费Theta(n)时间。
搜索操作
Splay树中的搜索操作执行标准的BST搜索,除了搜索之外,它还会进行Splay(将节点移动到根)。如果搜索成功,则展开找到的节点并成为新的根。否则,将显示到达NULL之前访问的最后一个节点,并成为新的根。
有以下几种情况可以访问该节点。
1)节点是根节点我们只返回根节点,因为被访问的节点已经是根节点,所以无需执行其他任何操作。
2)Zig:节点是根节点的子节点(该节点没有祖父母)。节点是根的左子节点(我们进行右旋转)或节点是其父节点的右孩子(我们进行左旋转)。
T1,T2和T3是以y(在左侧)或x(在右侧)为根的树的子树。
y x
/ \ Zig (Right Rotation) / \
x T3 – - – - – - – - - -> T1 y
/ \ < - - - - - - - - - / \
T1 T2 Zag (Left Rotation) T2 T3
3) Node既有父代又有祖父母。可能存在以下子情况。
…….. 3.a)Zig-Zig和Zag-Zag节点是父级的左子级,父级也是大父级的左级子级(两次向右旋转),或者节点是其父级的右级子级,父级也是父级的右级子级。祖父母(两次左旋转)。
Zig-Zig (Left Left Case):
G P X
/ \ / \ / \
P T4 rightRotate(G) X G rightRotate(P) T1 P
/ \ ============> / \ / \ ============> / \
X T3 T1 T2 T3 T4 T2 G
/ \ / \
T1 T2 T3 T4
Zag-Zag (Right Right Case):
G P X
/ \ / \ / \
T1 P leftRotate(G) G X leftRotate(P) P T4
/ \ ============> / \ / \ ============> / \
T2 X T1 T2 T3 T4 G T3
/ \ / \
T3 T4 T1 T2
…….. 3.b)Zig-Zag和Zag-Zig节点是父级的左子级,父级是祖父级的右级子级(向左旋转,然后向右旋转),或者节点是其父级的右级子级,父级是左级子级祖父母的身份(右旋转,然后左旋转)。
Zag-Zig (Left Right Case):
G G X
/ \ / \ / \
P T4 leftRotate(P) X T4 rightRotate(G) P G
/ \ ============> / \ ============> / \ / \
T1 X P T3 T1 T2 T3 T4
/ \ / \
T2 T3 T1 T2
Zig-Zag (Right Left Case):
G G X
/ \ / \ / \
T1 P rightRotate(P) T1 X leftRotate(P) G P
/ \ =============> / \ ============> / \ / \
X T4 T2 P T1 T2 T3 T4
/ \ / \
T2 T3 T3 T4
例子:
100 100 [20]
/ \ / \ \
50 200 50 200 50
/ search(20) / search(20) / \
40 ======> [20] ========> 30 100
/ 1. Zig-Zig \ 2. Zig-Zig \ \
30 at 40 30 at 100 40 200
/ \
[20] 40
要注意的重要一点是,搜索或展开操作不仅使搜索到的密钥成为根,而且还平衡了BST。例如,在上述情况下,BST的高度减少了1。
执行:
C++
#include
using namespace std;
// An AVL tree node
class node
{
public:
int key;
node *left, *right;
};
/* Helper function that allocates
a new node with the given key and
NULL left and right pointers. */
node* newNode(int key)
{
node* Node = new node();
Node->key = key;
Node->left = Node->right = NULL;
return (Node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
node *rightRotate(node *x)
{
node *y = x->left;
x->left = y->right;
y->right = x;
return y;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
node *leftRotate(node *x)
{
node *y = x->right;
x->right = y->left;
y->left = x;
return y;
}
// This function brings the key at
// root if key is present in tree.
// If key is not present, then it
// brings the last accessed item at
// root. This function modifies the
// tree and returns the new root
node *splay(node *root, int key)
{
// Base cases: root is NULL or
// key is present at root
if (root == NULL || root->key == key)
return root;
// Key lies in left subtree
if (root->key > key)
{
// Key is not in tree, we are done
if (root->left == NULL) return root;
// Zig-Zig (Left Left)
if (root->left->key > key)
{
// First recursively bring the
// key as root of left-left
root->left->left = splay(root->left->left, key);
// Do first rotation for root,
// second rotation is done after else
root = rightRotate(root);
}
else if (root->left->key < key) // Zig-Zag (Left Right)
{
// First recursively bring
// the key as root of left-right
root->left->right = splay(root->left->right, key);
// Do first rotation for root->left
if (root->left->right != NULL)
root->left = leftRotate(root->left);
}
// Do second rotation for root
return (root->left == NULL)? root: rightRotate(root);
}
else // Key lies in right subtree
{
// Key is not in tree, we are done
if (root->right == NULL) return root;
// Zag-Zig (Right Left)
if (root->right->key > key)
{
// Bring the key as root of right-left
root->right->left = splay(root->right->left, key);
// Do first rotation for root->right
if (root->right->left != NULL)
root->right = rightRotate(root->right);
}
else if (root->right->key < key)// Zag-Zag (Right Right)
{
// Bring the key as root of
// right-right and do first rotation
root->right->right = splay(root->right->right, key);
root = leftRotate(root);
}
// Do second rotation for root
return (root->right == NULL)? root: leftRotate(root);
}
}
// The search function for Splay tree.
// Note that this function returns the
// new root of Splay Tree. If key is
// present in tree then, it is moved to root.
node *search(node *root, int key)
{
return splay(root, key);
}
// A utility function to print
// preorder traversal of the tree.
// The function also prints height of every node
void preOrder(node *root)
{
if (root != NULL)
{
cout<key<<" ";
preOrder(root->left);
preOrder(root->right);
}
}
/* Driver code*/
int main()
{
node *root = newNode(100);
root->left = newNode(50);
root->right = newNode(200);
root->left->left = newNode(40);
root->left->left->left = newNode(30);
root->left->left->left->left = newNode(20);
root = search(root, 20);
cout << "Preorder traversal of the modified Splay tree is \n";
preOrder(root);
return 0;
}
// This code is contributed by rathbhupendra
C
// The code is adopted from http://goo.gl/SDH9hH
#include
#include
// An AVL tree node
struct node
{
int key;
struct node *left, *right;
};
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct node* newNode(int key)
{
struct node* node = (struct node*)malloc(sizeof(struct node));
node->key = key;
node->left = node->right = NULL;
return (node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct node *rightRotate(struct node *x)
{
struct node *y = x->left;
x->left = y->right;
y->right = x;
return y;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct node *leftRotate(struct node *x)
{
struct node *y = x->right;
x->right = y->left;
y->left = x;
return y;
}
// This function brings the key at root if key is present in tree.
// If key is not present, then it brings the last accessed item at
// root. This function modifies the tree and returns the new root
struct node *splay(struct node *root, int key)
{
// Base cases: root is NULL or key is present at root
if (root == NULL || root->key == key)
return root;
// Key lies in left subtree
if (root->key > key)
{
// Key is not in tree, we are done
if (root->left == NULL) return root;
// Zig-Zig (Left Left)
if (root->left->key > key)
{
// First recursively bring the key as root of left-left
root->left->left = splay(root->left->left, key);
// Do first rotation for root, second rotation is done after else
root = rightRotate(root);
}
else if (root->left->key < key) // Zig-Zag (Left Right)
{
// First recursively bring the key as root of left-right
root->left->right = splay(root->left->right, key);
// Do first rotation for root->left
if (root->left->right != NULL)
root->left = leftRotate(root->left);
}
// Do second rotation for root
return (root->left == NULL)? root: rightRotate(root);
}
else // Key lies in right subtree
{
// Key is not in tree, we are done
if (root->right == NULL) return root;
// Zag-Zig (Right Left)
if (root->right->key > key)
{
// Bring the key as root of right-left
root->right->left = splay(root->right->left, key);
// Do first rotation for root->right
if (root->right->left != NULL)
root->right = rightRotate(root->right);
}
else if (root->right->key < key)// Zag-Zag (Right Right)
{
// Bring the key as root of right-right and do first rotation
root->right->right = splay(root->right->right, key);
root = leftRotate(root);
}
// Do second rotation for root
return (root->right == NULL)? root: leftRotate(root);
}
}
// The search function for Splay tree. Note that this function
// returns the new root of Splay Tree. If key is present in tree
// then, it is moved to root.
struct node *search(struct node *root, int key)
{
return splay(root, key);
}
// A utility function to print preorder traversal of the tree.
// The function also prints height of every node
void preOrder(struct node *root)
{
if (root != NULL)
{
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Driver program to test above function*/
int main()
{
struct node *root = newNode(100);
root->left = newNode(50);
root->right = newNode(200);
root->left->left = newNode(40);
root->left->left->left = newNode(30);
root->left->left->left->left = newNode(20);
root = search(root, 20);
printf("Preorder traversal of the modified Splay tree is \n");
preOrder(root);
return 0;
}
Java
// Java implementation for above approach
class GFG
{
// An AVL tree node
static class node
{
int key;
node left, right;
};
/* Helper function that allocates
a new node with the given key and
null left and right pointers. */
static node newNode(int key)
{
node Node = new node();
Node.key = key;
Node.left = Node.right = null;
return (Node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
static node rightRotate(node x)
{
node y = x.left;
x.left = y.right;
y.right = x;
return y;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
static node leftRotate(node x)
{
node y = x.right;
x.right = y.left;
y.left = x;
return y;
}
// This function brings the key at
// root if key is present in tree.
// If key is not present, then it
// brings the last accessed item at
// root. This function modifies the
// tree and returns the new root
static node splay(node root, int key)
{
// Base cases: root is null or
// key is present at root
if (root == null || root.key == key)
return root;
// Key lies in left subtree
if (root.key > key)
{
// Key is not in tree, we are done
if (root.left == null) return root;
// Zig-Zig (Left Left)
if (root.left.key > key)
{
// First recursively bring the
// key as root of left-left
root.left.left = splay(root.left.left, key);
// Do first rotation for root,
// second rotation is done after else
root = rightRotate(root);
}
else if (root.left.key < key) // Zig-Zag (Left Right)
{
// First recursively bring
// the key as root of left-right
root.left.right = splay(root.left.right, key);
// Do first rotation for root.left
if (root.left.right != null)
root.left = leftRotate(root.left);
}
// Do second rotation for root
return (root.left == null) ?
root : rightRotate(root);
}
else // Key lies in right subtree
{
// Key is not in tree, we are done
if (root.right == null) return root;
// Zag-Zig (Right Left)
if (root.right.key > key)
{
// Bring the key as root of right-left
root.right.left = splay(root.right.left, key);
// Do first rotation for root.right
if (root.right.left != null)
root.right = rightRotate(root.right);
}
else if (root.right.key < key)// Zag-Zag (Right Right)
{
// Bring the key as root of
// right-right and do first rotation
root.right.right = splay(root.right.right, key);
root = leftRotate(root);
}
// Do second rotation for root
return (root.right == null) ?
root : leftRotate(root);
}
}
// The search function for Splay tree.
// Note that this function returns the
// new root of Splay Tree. If key is
// present in tree then, it is moved to root.
static node search(node root, int key)
{
return splay(root, key);
}
// A utility function to print
// preorder traversal of the tree.
// The function also prints height of every node
static void preOrder(node root)
{
if (root != null)
{
System.out.print(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
public static void main(String[] args)
{
node root = newNode(100);
root.left = newNode(50);
root.right = newNode(200);
root.left.left = newNode(40);
root.left.left.left = newNode(30);
root.left.left.left.left = newNode(20);
root = search(root, 20);
System.out.print("Preorder traversal of the" +
" modified Splay tree is \n");
preOrder(root);
}
}
// This code is contributed by 29AjayKumar
C#
// C# implementation for above approach
using System;
class GFG
{
// An AVL tree node
public class node
{
public int key;
public node left, right;
};
/* Helper function that allocates
a new node with the given key and
null left and right pointers. */
static node newNode(int key)
{
node Node = new node();
Node.key = key;
Node.left = Node.right = null;
return (Node);
}
// A utility function to right
// rotate subtree rooted with y
// See the diagram given above.
static node rightRotate(node x)
{
node y = x.left;
x.left = y.right;
y.right = x;
return y;
}
// A utility function to left
// rotate subtree rooted with x
// See the diagram given above.
static node leftRotate(node x)
{
node y = x.right;
x.right = y.left;
y.left = x;
return y;
}
// This function brings the key at
// root if key is present in tree.
// If key is not present, then it
// brings the last accessed item at
// root. This function modifies the
// tree and returns the new root
static node splay(node root, int key)
{
// Base cases: root is null or
// key is present at root
if (root == null || root.key == key)
return root;
// Key lies in left subtree
if (root.key > key)
{
// Key is not in tree, we are done
if (root.left == null) return root;
// Zig-Zig (Left Left)
if (root.left.key > key)
{
// First recursively bring the
// key as root of left-left
root.left.left = splay(root.left.left, key);
// Do first rotation for root,
// second rotation is done after else
root = rightRotate(root);
}
else if (root.left.key < key) // Zig-Zag (Left Right)
{
// First recursively bring
// the key as root of left-right
root.left.right = splay(root.left.right, key);
// Do first rotation for root.left
if (root.left.right != null)
root.left = leftRotate(root.left);
}
// Do second rotation for root
return (root.left == null) ?
root : rightRotate(root);
}
else // Key lies in right subtree
{
// Key is not in tree, we are done
if (root.right == null) return root;
// Zag-Zig (Right Left)
if (root.right.key > key)
{
// Bring the key as root of right-left
root.right.left = splay(root.right.left, key);
// Do first rotation for root.right
if (root.right.left != null)
root.right = rightRotate(root.right);
}
else if (root.right.key < key)// Zag-Zag (Right Right)
{
// Bring the key as root of
// right-right and do first rotation
root.right.right = splay(root.right.right, key);
root = leftRotate(root);
}
// Do second rotation for root
return (root.right == null) ?
root : leftRotate(root);
}
}
// The search function for Splay tree.
// Note that this function returns the
// new root of Splay Tree. If key is
// present in tree then, it is moved to root.
static node search(node root, int key)
{
return splay(root, key);
}
// A utility function to print
// preorder traversal of the tree.
// The function also prints height of every node
static void preOrder(node root)
{
if (root != null)
{
Console.Write(root.key + " ");
preOrder(root.left);
preOrder(root.right);
}
}
// Driver code
public static void Main(String[] args)
{
node root = newNode(100);
root.left = newNode(50);
root.right = newNode(200);
root.left.left = newNode(40);
root.left.left.left = newNode(30);
root.left.left.left.left = newNode(20);
root = search(root, 20);
Console.Write("Preorder traversal of the" +
" modified Splay tree is \n");
preOrder(root);
}
}
// This code is contributed by 29AjayKumar
输出:
Preorder traversal of the modified Splay tree is
20 50 30 40 100 200
概括
1) Splay树具有出色的局部性。经常访问的项目很容易找到。稀有物品不合时宜。
2)所有展开树操作平均需要O(Logn)时间。可以严格显示Splay树在任何操作序列上的平均每次操作运行时间为O(log n)(假设我们从一棵空树开始)
3)与AVL和红黑树相比,Splay树更简单,因为在每个树节点中都不需要额外的字段。
4)与AVL树不同,即使使用诸如搜索之类的只读操作,八字树也可以更改。
Splay树的应用
Splay树已成为最近30年来发明最广泛使用的基本数据结构,因为它们是许多应用程序中最快的平衡搜索树类型。
Splay树用于Windows NT(在虚拟内存,网络和文件系统代码中),gcc编译器和GNU C++库,sed字符串编辑器,Fore Systems网络路由器,最受欢迎的Unix malloc实现,Linux可加载内核模块和其他许多软件中(来源:http://www.cs.berkeley.edu/~jrs/61b/lec/36)
参见展开树|设置2(插入)以进行八叉树插入。
参考:
http://www.cs.berkeley.edu/~jrs/61b/lec/36
http://www.cs.cornell.edu/courses/cs3110/2009fa/recitations/rec-splay.html
http://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt