给定大小为N * M的矩阵A [] []和由{L,R}形式的Q个查询组成的2D数组query [] [] ,任务是计算行总和和列总和的数量它们是[L,R]范围内的整数。
例子:
Input: N = 2, M = 2, A[][] = {{1, 4}, {2, 5}}, Q = 2, queries[][] = {{3, 7}, {3, 9}}
Output: 3 4
Explanation:
Sum of the first row = 1 + 4 = 5.
Sum of the second row = 2 + 5 = 7.
Sum of the first row = 1 + 2 = 3.
Sum of the first row = 4 + 5 = 9.
Query 1: L = 3, R = 7:
Column sum present in the range = 3.
Row sums present in the range = {5, 7}.
Therefore, count is 3.
Query 2: L = 3, R = 9:
Column sum present in the range = {3, 9}.
Row sums present in the range = {5, 7}.
Therefore, count is 3.
Input: N = 3, M = 2, A[][] = {{13, 3}, {9, 4}, {6, 10}}, Q = 2, queries[][] = {{10, 20}, {25, 35}}
Output: 4 1
高效的方法:想法是遍历矩阵的行和列,并分别计算每个行和列的总和。遍历数组query [] []并使用Binary Search计算给定范围内存在的行总和或列总和的数量。请按照以下步骤解决问题:
- 初始化两个辅助数组,例如row_sum []和col_sum [] ,以存储行和列的总和。
- 初始化另一个数组,例如sum_list [],以存储所有组合的行总和和列总和。
- 以升序对数组sum_list []进行排序。
- 遍历数组query [] ,对于每个查询:
- 执行二进制搜索以找到最左边总和(即L)的索引,即i 。
- 再次,执行二进制搜索以找到最右边总和的索引j ,即R
- 打印j – i + 1作为查询结果。
下面是上述方法的实现:
Java
// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG {
// Function to preprocess the matrix to execute the
// queries
static void totalCount(int[][] A, int N,
int M, int[][] queries, int Q)
{
// Stores the sum of each row
int row_sum[] = new int[N];
// Stores the sum of each col
int col_sum[] = new int[M];
// Traverse the matrix and calculate
// sum of each row and column
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
row_sum[i] += A[i][j];
col_sum[j] += A[i][j];
}
}
ArrayList sum_list
= new ArrayList<>();
// Insert all row sums in sum_list
for (int i = 0; i < N; i++)
sum_list.add(row_sum[i]);
// Insert all column sums in sum_list
for (int i = 0; i < M; i++)
sum_list.add(col_sum[i]);
// Sort the array in ascending order
Collections.sort(sum_list);
// Traverse the array queries[][]
for (int i = 0; i < Q; i++) {
int L = queries[i][0];
int R = queries[i][1];
// Search the leftmost index of L
int l = left_search(sum_list, L);
// Search the rightmost index of R
int r = right_search(sum_list, R);
System.out.print(r - l + 1 + " ");
}
}
// Function to search for the
// leftmost index of given number
static int left_search(
ArrayList A,
int num)
{
// Intialize low, high and ans
int low = 0, high = A.size() - 1;
int ans = 0;
while (low <= high) {
// Stores mid
int mid = low + (high - low) / 2;
// If A[mid] >= num
if (A.get(mid) >= num) {
ans = mid;
high = mid - 1;
}
else {
low = mid + 1;
}
}
return ans;
}
// Function to search for the
// rightmost index of given number
static int right_search(
ArrayList A,
int num)
{
// Intialise low, high and ans
int low = 0, high = A.size() - 1;
int ans = high;
while (low <= high) {
// Stores mid
int mid = low + (high - low) / 2;
// If A[mid] <= num
if (A.get(mid) <= num) {
// Update ans
ans = mid;
// Update mid
low = mid + 1;
}
else {
// Update high
high = mid - 1;
}
}
return ans;
}
// Driver Code
public static void main(String[] args)
{
// Given dimensions of matrix
int N = 3, M = 2;
// Given matrix
int A[][] = { { 13, 3 },
{ 9, 4 },
{ 6, 10 } };
// Given number of queries
int Q = 2;
// Given queries
int queries[][] = { { 10, 20 }, { 25, 35 } };
// Function call to count the
// number row-sums and column-sums
// present in the given ranges
totalCount(A, N, M, queries, Q);
}
}
Python3
# Python3 program for the above approach
from collections import deque
from bisect import bisect_left, bisect_right
# Function to preprocess the matrix to execute the
# queries
def totalCount(A, N, M, queries, Q):
# Stores the sum of each row
row_sum = [0]*N
# Stores the sum of each col
col_sum = [0]*M
# Traverse the matrix and calculate
# sum of each row and column
for i in range(N):
for j in range(M):
row_sum[i] += A[i][j]
col_sum[j] += A[i][j]
sum_list = []
# Insert all row sums in sum_list
for i in range(N):
sum_list.append(row_sum[i])
# Insert all column sums in sum_list
for i in range(M):
sum_list.append(col_sum[i])
# Sort the array in ascending order
sum_list = sorted(sum_list)
# Traverse the array queries[][]
for i in range(Q):
L = queries[i][0]
R = queries[i][1]
# Search the leftmost index of L
l = left_search(sum_list, L)
# Search the rightmost index of R
r = right_search(sum_list, R)
print(r - l + 1, end = " ")
# Function to search for the
# leftmost index of given number
def left_search(A, num):
# Intialize low, high and ans
low, high = 0, len(A) - 1
ans = 0
while (low <= high):
# Stores mid
mid = low + (high - low) // 2
# If A[mid] >= num
if (A[mid] >= num):
ans = mid
high = mid - 1
else:
low = mid + 1
return ans
# Function to search for the
# rightmost index of given number
def right_search(A, num):
# Intialise low, high and ans
low, high = 0, len(A) - 1
ans = high
while (low <= high):
# Stores mid
mid = low + (high - low) // 2
# If A[mid] <= num
if (A[mid] <= num):
# Update ans
ans = mid
# Update mid
low = mid + 1
else:
# Update high
high = mid - 1
return ans
# Driver Code
if __name__ == '__main__':
# Given dimensions of matrix
N, M = 3, 2
# Given matrix
A = [ [ 13, 3 ],
[ 9, 4 ],
[ 6, 10 ] ]
# Given number of queries
Q = 2
# Given queries
queries= [ [ 10, 20 ], [ 25, 35 ] ]
# Function call to count the
# number row-sums and column-sums
# present in the given ranges
totalCount(A, N, M, queries, Q)
# This code is contributed by mohit kumar 29.
4 1
时间复杂度: O(Q * log(N * M))
辅助空间: O(N * M)