给定大小为N的数组arr [] ,任务是生成并打印给定数组的所有排列。
例子:
Input: arr[] = {1, 2}
Output:
1 2
2 1
Input: {0, 1, 2}
Output:
0 1 2
1 0 2
0 2 1
2 0 1
1 2 0
2 1 0
方法:这里和这里讨论解决上述问题的递归方法。在这篇文章中,将讨论一种输出给定数组的所有排列的迭代方法。
迭代方法充当状态机。调用机器时,它将输出排列并移至下一个排列。
首先,我们需要一个整数数组Indexes来存储输入数组的所有索引,并且将数组Indexes中的值初始化为0到n – 1 。我们需要做的是置换Indexes数组。
在迭代过程中,我们在Indexes数组中找到最小的index增量,使得Indexes [Increase]
- 找到索引mid ,以使Indexes [mid]最大,并且约束条件为0≤mid≤增加,并且Indexs [mid]
;由于数组索引从0到反向递增排序,因此此步骤可以使用二进制搜索。 - 交换索引[Increase + 1]和索引[mid] 。
- 将索引[0]反向索引为[Increase] 。
当索引中的值变为n – 1到0时,就没有“值增加”,并且算法终止。
为了输出组合,我们遍历索引数组,而整数数组的值就是输入数组的索引。
下图说明了算法中的迭代。
下面是上述方法的实现:
C++
// C++ implementation of the approach
#include
using namespace std;
template
class AllPermutation {
private:
// The input array for permutation
const T* Arr;
// Length of the input array
const int Length;
// Index array to store indexes of input array
int* Indexes;
// The index of the first "increase"
// in the Index array which is the smallest
// i such that Indexes[i] < Indexes[i + 1]
int Increase;
public:
// Constructor
AllPermutation(T* arr, int length)
: Arr(arr), Length(length)
{
this->Indexes = nullptr;
this->Increase = -1;
}
// Destructor
~AllPermutation()
{
if (this->Indexes != nullptr) {
delete[] this->Indexes;
}
}
// Initialize and output
// the first permutation
void GetFirst()
{
// Allocate memory for Indexes array
this->Indexes = new int[this->Length];
// Initialize the values in Index array
// from 0 to n - 1
for (int i = 0; i < this->Length; ++i) {
this->Indexes[i] = i;
}
// Set the Increase to 0
// since Indexes[0] = 0 < Indexes[1] = 1
this->Increase = 0;
// Output the first permutation
this->Output();
}
// Function that returns true if it is
// possible to generate the next permutation
bool HasNext()
{
// When Increase is in the end of the array,
// it is not possible to have next one
return this->Increase != (this->Length - 1);
}
// Output the next permutation
void GetNext()
{
// Increase is at the very beginning
if (this->Increase == 0) {
// Swap Index[0] and Index[1]
this->Swap(this->Increase, this->Increase + 1);
// Update Increase
this->Increase += 1;
while (this->Increase < this->Length - 1
&& this->Indexes[this->Increase]
> this->Indexes[this->Increase + 1]) {
++this->Increase;
}
}
else {
// Value at Indexes[Increase + 1] is greater than Indexes[0]
// no need for binary search,
// just swap Indexes[Increase + 1] and Indexes[0]
if (this->Indexes[this->Increase + 1] > this->Indexes[0]) {
this->Swap(this->Increase + 1, 0);
}
else {
// Binary search to find the greatest value
// which is less than Indexes[Increase + 1]
int start = 0;
int end = this->Increase;
int mid = (start + end) / 2;
int tVal = this->Indexes[this->Increase + 1];
while (!(this->Indexes[mid] < tVal
&& this->Indexes[mid - 1] > tVal)) {
if (this->Indexes[mid] < tVal) {
end = mid - 1;
}
else {
start = mid + 1;
}
mid = (start + end) / 2;
}
// Swap
this->Swap(this->Increase + 1, mid);
}
// Invert 0 to Increase
for (int i = 0; i <= this->Increase / 2; ++i) {
this->Swap(i, this->Increase - i);
}
// Reset Increase
this->Increase = 0;
}
this->Output();
}
private:
// Function to output the input array
void Output()
{
for (int i = 0; i < this->Length; ++i) {
// Indexes of the input array
// are at the Indexes array
cout << (this->Arr[this->Indexes[i]]) << " ";
}
cout << endl;
}
// Swap two values in the Indexes array
void Swap(int p, int q)
{
int tmp = this->Indexes[p];
this->Indexes[p] = this->Indexes[q];
this->Indexes[q] = tmp;
}
};
// Driver code
int main()
{
int arr[] = { 0, 1, 2 };
AllPermutation perm(arr, sizeof(arr) / sizeof(int));
perm.GetFirst();
while (perm.HasNext()) {
perm.GetNext();
}
return 0;
}
Java
// Java implementation of the approach
class AllPermutation
{
// The input array for permutation
private final int Arr[];
// Index array to store indexes of input array
private int Indexes[];
// The index of the first "increase"
// in the Index array which is the smallest
// i such that Indexes[i] < Indexes[i + 1]
private int Increase;
// Constructor
public AllPermutation(int arr[])
{
this.Arr = arr;
this.Increase = -1;
this.Indexes = new int[this.Arr.length];
}
// Initialize and output
// the first permutation
public void GetFirst()
{
// Allocate memory for Indexes array
this.Indexes = new int[this.Arr.length];
// Initialize the values in Index array
// from 0 to n - 1
for (int i = 0; i < Indexes.length; ++i)
{
this.Indexes[i] = i;
}
// Set the Increase to 0
// since Indexes[0] = 0 < Indexes[1] = 1
this.Increase = 0;
// Output the first permutation
this.Output();
}
// Function that returns true if it is
// possible to generate the next permutation
public boolean HasNext()
{
// When Increase is in the end of the array,
// it is not possible to have next one
return this.Increase != (this.Indexes.length - 1);
}
// Output the next permutation
public void GetNext()
{
// Increase is at the very beginning
if (this.Increase == 0)
{
// Swap Index[0] and Index[1]
this.Swap(this.Increase, this.Increase + 1);
// Update Increase
this.Increase += 1;
while (this.Increase < this.Indexes.length - 1
&& this.Indexes[this.Increase]
> this.Indexes[this.Increase + 1])
{
++this.Increase;
}
}
else
{
// Value at Indexes[Increase + 1] is greater than Indexes[0]
// no need for binary search,
// just swap Indexes[Increase + 1] and Indexes[0]
if (this.Indexes[this.Increase + 1] > this.Indexes[0])
{
this.Swap(this.Increase + 1, 0);
}
else
{
// Binary search to find the greatest value
// which is less than Indexes[Increase + 1]
int start = 0;
int end = this.Increase;
int mid = (start + end) / 2;
int tVal = this.Indexes[this.Increase + 1];
while (!(this.Indexes[mid] tVal))
{
if (this.Indexes[mid] < tVal)
{
end = mid - 1;
}
else
{
start = mid + 1;
}
mid = (start + end) / 2;
}
// Swap
this.Swap(this.Increase + 1, mid);
}
// Invert 0 to Increase
for (int i = 0; i <= this.Increase / 2; ++i)
{
this.Swap(i, this.Increase - i);
}
// Reset Increase
this.Increase = 0;
}
this.Output();
}
// Function to output the input array
private void Output()
{
for (int i = 0; i < this.Indexes.length; ++i)
{
// Indexes of the input array
// are at the Indexes array
System.out.print(this.Arr[this.Indexes[i]]);
System.out.print(" ");
}
System.out.println();
}
// Swap two values in the Indexes array
private void Swap(int p, int q)
{
int tmp = this.Indexes[p];
this.Indexes[p] = this.Indexes[q];
this.Indexes[q] = tmp;
}
}
// Driver code
class AppDriver
{
public static void main(String args[])
{
int[] arr = { 0, 1, 2 };
AllPermutation perm = new AllPermutation(arr);
perm.GetFirst();
while (perm.HasNext())
{
perm.GetNext();
}
}
}
// This code is contributed by ghanshyampandey
C#
// C# implementation of the approach
using System;
namespace Permutation {
class AllPermutation {
// The input array for permutation
private readonly T[] Arr;
// Index array to store indexes of input array
private int[] Indexes;
// The index of the first "increase"
// in the Index array which is the smallest
// i such that Indexes[i] < Indexes[i + 1]
private int Increase;
// Constructor
public AllPermutation(T[] arr)
{
this.Arr = arr;
this.Increase = -1;
}
// Initialize and output
// the first permutation
public void GetFirst()
{
// Allocate memory for Indexes array
this.Indexes = new int[this.Arr.Length];
// Initialize the values in Index array
// from 0 to n - 1
for (int i = 0; i < Indexes.Length; ++i) {
this.Indexes[i] = i;
}
// Set the Increase to 0
// since Indexes[0] = 0 < Indexes[1] = 1
this.Increase = 0;
// Output the first permutation
this.Output();
}
// Function that returns true if it is
// possible to generate the next permutation
public bool HasNext()
{
// When Increase is in the end of the array,
// it is not possible to have next one
return this.Increase != (this.Indexes.Length - 1);
}
// Output the next permutation
public void GetNext()
{
// Increase is at the very beginning
if (this.Increase == 0) {
// Swap Index[0] and Index[1]
this.Swap(this.Increase, this.Increase + 1);
// Update Increase
this.Increase += 1;
while (this.Increase < this.Indexes.Length - 1
&& this.Indexes[this.Increase]
> this.Indexes[this.Increase + 1]) {
++this.Increase;
}
}
else {
// Value at Indexes[Increase + 1] is greater than Indexes[0]
// no need for binary search,
// just swap Indexes[Increase + 1] and Indexes[0]
if (this.Indexes[this.Increase + 1] > this.Indexes[0]) {
this.Swap(this.Increase + 1, 0);
}
else {
// Binary search to find the greatest value
// which is less than Indexes[Increase + 1]
int start = 0;
int end = this.Increase;
int mid = (start + end) / 2;
int tVal = this.Indexes[this.Increase + 1];
while (!(this.Indexes[mid] tVal)) {
if (this.Indexes[mid] < tVal) {
end = mid - 1;
}
else {
start = mid + 1;
}
mid = (start + end) / 2;
}
// Swap
this.Swap(this.Increase + 1, mid);
}
// Invert 0 to Increase
for (int i = 0; i <= this.Increase / 2; ++i) {
this.Swap(i, this.Increase - i);
}
// Reset Increase
this.Increase = 0;
}
this.Output();
}
// Function to output the input array
private void Output()
{
for (int i = 0; i < this.Indexes.Length; ++i) {
// Indexes of the input array
// are at the Indexes array
Console.Write(this.Arr[this.Indexes[i]]);
Console.Write(" ");
}
Console.WriteLine();
}
// Swap two values in the Indexes array
private void Swap(int p, int q)
{
int tmp = this.Indexes[p];
this.Indexes[p] = this.Indexes[q];
this.Indexes[q] = tmp;
}
}
// Driver code
class AppDriver {
static void Main()
{
int[] arr = { 0, 1, 2 };
AllPermutation perm = new AllPermutation(arr);
perm.GetFirst();
while (perm.HasNext()) {
perm.GetNext();
}
}
}
}
输出:
0 1 2
1 0 2
0 2 1
2 0 1
1 2 0
2 1 0