Mahotas – 均值过滤器
在本文中,我们将了解如何将均值滤波器应用于 mahotas 中的图像。平均(或均值)滤波是一种通过减少相邻像素之间的强度变化量来“平滑”图像的方法。平均滤波器的工作原理是逐个像素地移动图像,用相邻像素(包括其自身)的平均值替换每个值。
在本教程中,我们将使用“lena”图像,下面是加载它的命令。
mahotas.demos.load('lena')
下面是莉娜的图片
In order to do this we will use mahotas.mean_filter method
Syntax : mahotas.mean_filter(img, n)
Argument : It takes image object and neighbor pixel as argument
Return : It returns image object
注意:输入图像应被过滤或应加载为灰色
为了过滤图像,我们将获取图像对象 numpy.ndarray 并在索引的帮助下对其进行过滤,下面是执行此操作的命令
image = image[:, :, 0]
下面是实现
Python3
# importing required libraries
import mahotas
import mahotas.demos
from pylab import gray, imshow, show
import numpy as np
import matplotlib.pyplot as plt
# loading image
img = mahotas.demos.load('lena')
# filtering image
img = img.max(2)
print("Image")
# showing image
imshow(img)
show()
# applying mean filter
new_img = mahotas.mean_filter(img, n)
# showing image
print("Mean Filter")
imshow(new_img)
show()
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
print("Image")
# showing image
imshow(img)
show()
# applying mean filter
new_img = mahotas.mean_filter(img, n)
# showing image
print("Mean Filter")
imshow(new_img)
show()
输出 :
Image
Mean Filter
另一个例子
Python3
# importing required libraries
import mahotas
import numpy as np
from pylab import gray, imshow, show
import os
import matplotlib.pyplot as plt
# loading image
img = mahotas.imread('dog_image.png')
# filtering image
img = img[:, :, 0]
print("Image")
# showing image
imshow(img)
show()
# applying mean filter
new_img = mahotas.mean_filter(img, n)
# showing image
print("Mean Filter")
imshow(new_img)
show()
输出 :
Image
Mean Filter