📜  Python – tensorflow.IndexedSlices.name 属性

📅  最后修改于: 2022-05-13 01:54:33.505000             🧑  作者: Mango

Python – tensorflow.IndexedSlices.name 属性

TensorFlow 是由 Google 设计的开源Python库,用于开发机器学习模型和深度学习神经网络。

name用于查找索引切片的名称。这仅在禁用急切执行时才有效。

示例 1:在此示例中,启用了急切执行,因此它会引发 AttribbuteError。

Python3
# Importing the library
import tensorflow as tf
  
# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]])
  
# Printing the input
print('data: ', data)
  
# Calculating result
res = tf.IndexedSlices(data, [0], 1)
  
# Finding name
name = res.name
  
# Printing the result
print('Name: ', name)


Python3
# Importing the library
import tensorflow as tf
  
# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]])
  
# Printing the input
print('data: ', data)
  
# Calculating result
res = tf.IndexedSlices(data, [0], 1)
  
# Finding name
name = res.name
  
# Printing the result
print('Name: ', name)


输出:

data:  tf.Tensor(
[[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)

---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)

 in ()
     12 
     13 # Finding name
---> 14 name = res.name
     15 
     16 # Printing the result

1 frames

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py in name(self)
   1121   def name(self):
   1122     raise AttributeError(
-> 1123         "Tensor.name is meaningless when eager execution is enabled.")
   1124 
   1125   @property

AttributeError: Tensor.name is meaningless when eager execution is enabled.

示例 2:在此示例中,急切执行被禁用。

Python3

# Importing the library
import tensorflow as tf
  
# Initializing the input
data = tf.constant([[1, 2, 3], [4, 5, 6]])
  
# Printing the input
print('data: ', data)
  
# Calculating result
res = tf.IndexedSlices(data, [0], 1)
  
# Finding name
name = res.name
  
# Printing the result
print('Name: ', name)

输出:

data:  Tensor("Const_13:0", shape=(2, 3), dtype=int32)
Name:  Const_13:0