给定一个整数的nxn矩阵。问题是找到具有可被给定值k整除的和的最大面积的矩形子矩阵。
例子:
Input : mat[][] = { {1, 2, -1, -4},
{-8, -3, 4, 2},
{3, 8, 10, 1},
{-4, -1, 1, 7} }
k = 5
Output : Area = 12
(Top, Left): (0, 0)
(Bottom, Right): (2, 3)
The sub-matrix is:
| 1, 2, -1, -4 |
| -8, -3, 4, 2 |
| 3, 8, 10, 1 |
天真的方法:检查给定2D数组中每个可能的矩形,其总和可被“ k”整除,并打印最大的矩形。此解决方案需要4个嵌套循环,并且此解决方案的时间复杂度为O(n ^ 4)。
高效方法:对于一维数组,最长的子数组具有可被k整除的总子数组可用于将时间复杂度降低到O(n ^ 3)。这个想法是一个一个地固定左列和右列,并为每个左列和右列对的连续行找到最长的子数组,其总和可被“ k”整除。我们基本上为每个固定的左右列对找到顶部和底部行号(它们是最大子矩阵的一部分)。要找到顶部和底部的行号,请计算从左到右每一行中元素的总和,并将这些总和存储在一个名为temp []的数组中。因此,temp [i]表示第i行中从左到右的元素总和。现在,将具有可被k 1D算法整除的最长子数组应用于temp [],并获得可被temp []的’k’整除的最长子数组。该长度将是最大可能的长度,其中左侧和右侧为边界列。设置左对右列对的“顶部”和“底部”行索引并计算面积。以类似的方式,获取总和可被“ k”整除的其他子矩阵的顶部,底部,左侧,右侧索引,并打印具有最大面积的子矩阵。
C++
// C++ implementation to find largest rectangular
// sub-matrix having sum divisible by k
#include
using namespace std;
#define SIZE 10
// function to find the longest subarray with sum divisible
// by k. The function stores starting and ending indexes of
// the subarray at addresses pointed by start and finish
// pointers respectively.
void longSubarrWthSumDivByK(int arr[], int n, int k,
int& start, int& finish)
{
// unodered map 'um' implemented as
// hash table
unordered_map um;
// 'mod_arr[i]' stores (sum[0..i] % k)
int mod_arr[n];
int curr_sum = 0, max = 0;
// traverse arr[] and build up the
// array 'mod_arr[]'
for (int i = 0; i < n; i++) {
curr_sum += arr[i];
// as the sum can be negative, taking modulo twice
mod_arr[i] = ((curr_sum % k) + k) % k;
}
for (int i = 0; i < n; i++) {
// if true then sum(0..i) is divisible
// by k
if (mod_arr[i] == 0) {
// update variables
max = i + 1;
start = 0;
finish = i;
}
// if value 'mod_arr[i]' not present in 'um'
// then store it in 'um' with index of its
// first occurrence
else if (um.find(mod_arr[i]) == um.end())
um[mod_arr[i]] = i;
else
// if true, then update variables
if (max < (i - um[mod_arr[i]])) {
max = i - um[mod_arr[i]];
start = um[mod_arr[i]] + 1;
finish = i;
}
}
}
// function to find largest rectangular sub-matrix
// having sum divisible by k
void findLargestSubmatrix(int mat[SIZE][SIZE], int n, int k)
{
// Variables to store the final output
int finalLeft, finalRight, finalTop, finalBottom;
int left, right, i, maxArea = 0;
int temp[n], start, finish;
// Set the left column
for (left = 0; left < n; left++) {
// Initialize all elements of temp as 0
memset(temp, 0, sizeof(temp));
// Set the right column for the left column
// set by outer loop
for (right = left; right < n; right++) {
// Calculate sum between current left and
// right for every row 'i'
for (i = 0; i < n; ++i)
temp[i] += mat[i][right];
// The longSubarrWthSumDivByK() function sets
// the values of 'start' and 'finish'. So
// submatrix having sum divisible by 'k' between
// (start, left) and (finish, right) which is
// the largest submatrix with boundary columns
// strictly as left and right.
longSubarrWthSumDivByK(temp, n, k, start, finish);
// Calculate current area and compare it with
// maximum area so far. If maxArea is less, then
// update maxArea and other output values
if (maxArea < ((right - left + 1) *
(finish - start + 1))) {
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
maxArea = (right - left + 1) * (finish - start + 1);
}
}
}
// Print final values
cout << "(Top, Left): (" << finalTop << ", "
<< finalLeft << ")\n";
cout << "(Bottom, Right): (" << finalBottom << ", "
<< finalRight << ")\n";
cout << "Area: " << maxArea;
}
// Driver program to test above functions
int main()
{
int mat[SIZE][SIZE] = { { 1, 2, -1, -4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, 1 },
{ -4, -1, 1, 7 } };
int n = 4, k = 5;
findLargestSubmatrix(mat, n, k);
return 0;
}
Java
// Java implementation to find largest
// rectangular sub-matrix having sum
// divisible by k
import java.util.*;
class GFG{
static final int SIZE = 10;
static int start, finish;
// Function to find the longest subarray
// with sum divisible by k. The function
// stores starting and ending indexes of
// the subarray at addresses pointed by
// start and finish pointers respectively
static void longSubarrWthSumDivByK(int arr[],
int n, int k)
{
// unodered map 'um' implemented as
// hash table
HashMap um = new HashMap<>();
// 'mod_arr[i]' stores (sum[0..i] % k)
int []mod_arr = new int[n];
int curr_sum = 0, max = 0;
// Traverse arr[] and build up the
// array 'mod_arr[]'
for(int i = 0; i < n; i++)
{
curr_sum += arr[i];
// As the sum can be negative,
// taking modulo twice
mod_arr[i] = ((curr_sum % k) + k) % k;
}
for(int i = 0; i < n; i++)
{
// If true then sum(0..i) is
// divisible by k
if (mod_arr[i] == 0)
{
// Update variables
max = i + 1;
start = 0;
finish = i;
}
// If value 'mod_arr[i]' not present
// in 'um' then store it in 'um' with
// index of its first occurrence
else if (!um.containsKey(mod_arr[i]))
um.put(mod_arr[i], i);
else
// If true, then update variables
if (max < (i - um.get(mod_arr[i])))
{
max = i - um.get(mod_arr[i]);
start = um.get(mod_arr[i]) + 1;
finish = i;
}
}
}
// Function to find largest rectangular
// sub-matrix having sum divisible by k
static void findLargestSubmatrix(int mat[][],
int n, int k)
{
// Variables to store the final output
int finalLeft = 0, finalRight = 0,
finalTop = 0, finalBottom = 0;
int left, right, i, maxArea = 0;
int []temp = new int[n];
// Set the left column
for(left = 0; left < n; left++)
{
// Initialize all elements of temp as 0
Arrays.fill(temp, 0);
// Set the right column for the left
// column set by outer loop
for(right = left; right < n; right++)
{
// Calculate sum between current
// left and right for every row 'i'
for(i = 0; i < n; ++i)
temp[i] += mat[i][right];
// The longSubarrWthSumDivByK() function
// sets the values of 'start' and 'finish'.
// So submatrix having sum divisible by 'k'
// between (start, left) and (finish, right)
// which is the largest submatrix with
// boundary columns strictly as left and right.
longSubarrWthSumDivByK(temp, n, k);
// Calculate current area and compare it
// with maximum area so far. If maxArea
// is less, then update maxArea and other
// output values
if (maxArea < ((right - left + 1) *
(finish - start + 1)))
{
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
maxArea = (right - left + 1) *
(finish - start + 1);
}
}
}
// Print final values
System.out.print("(Top, Left): (" +
finalTop + ", " +
finalLeft + ")\n");
System.out.print("(Bottom, Right): (" +
finalBottom + ", " +
finalRight + ")\n");
System.out.print("Area: " + maxArea);
}
// Driver code
public static void main(String[] args)
{
int [][]mat = { { 1, 2, -1, -4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, 1 },
{ -4, -1, 1, 7 } };
int n = 4, k = 5;
findLargestSubmatrix(mat, n, k);
}
}
// This code is contributed by Amit Katiyar
C#
// C# implementation to find largest
// rectangular sub-matrix having sum
// divisible by k
using System;
using System.Collections.Generic;
class GFG{
//static readonly int SIZE = 10;
static int start, finish;
// Function to find the longest subarray
// with sum divisible by k. The function
// stores starting and ending indexes of
// the subarray at addresses pointed by
// start and finish pointers respectively
static void longSubarrWthSumDivByK(int []arr,
int n, int k)
{
// unodered map 'um' implemented as
// hash table
Dictionary um = new Dictionary();
// 'mod_arr[i]' stores (sum[0..i] % k)
int []mod_arr = new int[n];
int curr_sum = 0, max = 0;
// Traverse []arr and build up the
// array 'mod_arr[]'
for(int i = 0; i < n; i++)
{
curr_sum += arr[i];
// As the sum can be negative,
// taking modulo twice
mod_arr[i] = ((curr_sum % k) + k) % k;
}
for(int i = 0; i < n; i++)
{
// If true then sum(0..i) is
// divisible by k
if (mod_arr[i] == 0)
{
// Update variables
max = i + 1;
start = 0;
finish = i;
}
// If value 'mod_arr[i]' not present
// in 'um' then store it in 'um' with
// index of its first occurrence
else if (!um.ContainsKey(mod_arr[i]))
um.Add(mod_arr[i], i);
else
// If true, then update variables
if (max < (i - um[mod_arr[i]]))
{
max = i - um[mod_arr[i]];
start = um[mod_arr[i]] + 1;
finish = i;
}
}
}
// Function to find largest rectangular
// sub-matrix having sum divisible by k
static void findLargestSubmatrix(int [,]mat,
int n, int k)
{
// Variables to store the readonly output
int finalLeft = 0, finalRight = 0,
finalTop = 0, finalBottom = 0;
int left, right, i, maxArea = 0;
int []temp;
// Set the left column
for(left = 0; left < n; left++)
{
// Initialize all elements of temp as 0
temp = new int[n];
// Set the right column for the left
// column set by outer loop
for(right = left; right < n; right++)
{
// Calculate sum between current
// left and right for every row 'i'
for(i = 0; i < n; ++i)
temp[i] += mat[i,right];
// The longSubarrWthSumDivByK() function
// sets the values of 'start' and 'finish'.
// So submatrix having sum divisible by 'k'
// between (start, left) and (finish, right)
// which is the largest submatrix with
// boundary columns strictly as left and right.
longSubarrWthSumDivByK(temp, n, k);
// Calculate current area and compare it
// with maximum area so far. If maxArea
// is less, then update maxArea and other
// output values
if (maxArea < ((right - left + 1) *
(finish - start + 1)))
{
finalLeft = left;
finalRight = right;
finalTop = start;
finalBottom = finish;
maxArea = (right - left + 1) *
(finish - start + 1);
}
}
}
// Print readonly values
Console.Write("(Top, Left): (" +
finalTop + ", " +
finalLeft + ")\n");
Console.Write("(Bottom, Right): (" +
finalBottom + ", " +
finalRight + ")\n");
Console.Write("Area: " + maxArea);
}
// Driver code
public static void Main(String[] args)
{
int [,]mat = { { 1, 2, -1, -4 },
{ -8, -3, 4, 2 },
{ 3, 8, 10, 1 },
{ -4, -1, 1, 7 } };
int n = 4, k = 5;
findLargestSubmatrix(mat, n, k);
}
}
// This code is contributed by Princi Singh
输出:
(Top, Left): (0, 0)
(Bottom, Right): (2, 3)
Area: 12
时间复杂度: O(n ^ 3)。
辅助空间: O(n)。