我们在平面中获得了n个点的数组,问题是找出数组中最接近的点对。在许多应用中都会出现此问题。例如,在空中交通管制中,您可能想要监视过于靠近的平面,因为这可能表示可能发生碰撞。回忆以下关于两个点p和q之间距离的公式。
我们已经讨论了此问题的分而治之解决方案。上一篇文章中提供的实现的时间复杂度为O(n(Logn)^ 2)。在这篇文章中,我们讨论时间复杂度为O(nLogn)的实现。
以下是上一篇文章中讨论的算法的概述。
1)我们根据x坐标对所有点进行排序。
2)将所有点分成两半。
3)递归地找到两个子数组中的最小距离。
4)至少取两个最小距离。设最小值为d。
5)创建一个数组strip [],存储所有距离除以两组的中线相距d距离的所有点。
6)在strip []中找到最小的距离。
7)返回上一步6中计算的d的最小值和最小距离。
上面方法的优点是,如果将数组strip []根据y坐标排序,则可以在O(n)时间中找到strip []中的最小距离。在上一篇文章中讨论的实现中,假设排序步骤花费O(nLogn)时间,在每个使时间复杂度为O(n(Logn)^ 2)的递归调用中,对strip []进行了显式排序。
在这篇文章中,我们讨论一个时间复杂度为O(nLogn)的实现。想法是根据y坐标对所有点进行预排序。令排序后的数组为Py []。进行递归调用时,我们还需要根据垂直线划分Py []的点。我们可以通过简单地处理每个点并将其x坐标与中线的x坐标进行比较来做到这一点。
以下是O(nLogn)方法的C++实现。
// A divide and conquer program in C++ to find the smallest distance from a
// given set of points.
#include
#include
#include
#include
using namespace std;
// A structure to represent a Point in 2D plane
struct Point
{
int x, y;
};
/* Following two functions are needed for library function qsort().
Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */
// Needed to sort array of points according to X coordinate
int compareX(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->x - p2->x);
}
// Needed to sort array of points according to Y coordinate
int compareY(const void* a, const void* b)
{
Point *p1 = (Point *)a, *p2 = (Point *)b;
return (p1->y - p2->y);
}
// A utility function to find the distance between two points
float dist(Point p1, Point p2)
{
return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y)
);
}
// A Brute Force method to return the smallest distance between two points
// in P[] of size n
float bruteForce(Point P[], int n)
{
float min = FLT_MAX;
for (int i = 0; i < n; ++i)
for (int j = i+1; j < n; ++j)
if (dist(P[i], P[j]) < min)
min = dist(P[i], P[j]);
return min;
}
// A utility function to find a minimum of two float values
float min(float x, float y)
{
return (x < y)? x : y;
}
// A utility function to find the distance between the closest points of
// strip of a given size. All points in strip[] are sorted according to
// y coordinate. They all have an upper bound on minimum distance as d.
// Note that this method seems to be a O(n^2) method, but it's a O(n)
// method as the inner loop runs at most 6 times
float stripClosest(Point strip[], int size, float d)
{
float min = d; // Initialize the minimum distance as d
// Pick all points one by one and try the next points till the difference
// between y coordinates is smaller than d.
// This is a proven fact that this loop runs at most 6 times
for (int i = 0; i < size; ++i)
for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)
if (dist(strip[i],strip[j]) < min)
min = dist(strip[i], strip[j]);
return min;
}
// A recursive function to find the smallest distance. The array Px contains
// all points sorted according to x coordinates and Py contains all points
// sorted according to y coordinates
float closestUtil(Point Px[], Point Py[], int n)
{
// If there are 2 or 3 points, then use brute force
if (n <= 3)
return bruteForce(Px, n);
// Find the middle point
int mid = n/2;
Point midPoint = Px[mid];
// Divide points in y sorted array around the vertical line.
// Assumption: All x coordinates are distinct.
Point Pyl[mid]; // y sorted points on left of vertical line
Point Pyr[n-mid]; // y sorted points on right of vertical line
int li = 0, ri = 0; // indexes of left and right subarrays
for (int i = 0; i < n; i++)
{
if (Py[i].x <= midPoint.x && li
输出:
The smallest distance is 1.41421
时间复杂度:令上述算法的时间复杂度为T(n)。让我们假设我们使用O(nLogn)排序算法。上面的算法将所有点分为两组,然后递归调用两组。划分后,它将在O(n)时间中找到条带。另外,要花费O(n)时间围绕中间垂直线划分Py数组。最终找到O(n)时间中条带中最接近的点。所以T(n)可以表示如下
T(n)= 2T(n / 2)+ O(n)+ O(n)+ O(n)
T(n)= 2T(n / 2)+ O(n)
T(n)= T(nLogn)
参考:
http://www.cs.umd.edu/class/fall2013/cmsc451/Lects/lect10.pdf
http://www.youtube.com/watch?v=vS4Zn1a9KUc
http://www.youtube.com/watch?v=T3T7T8Ym20M
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem