📜  流程同步中的Peterson算法

📅  最后修改于: 2021-04-27 18:09:04             🧑  作者: Mango

先决条件–同步,关键部分

问题:生产者使用者问题(或有界缓冲区问题)描述了两个过程,即生产者和使用者,它们共享一个用作队列的固定大小的公用缓冲区。生产者生产一个项目并将其放入缓冲区。如果缓冲区已满,则生产者将不得不等待缓冲区中的空块。消费者从缓冲区消费物品。如果缓冲区已经为空,那么使用者将不得不等待缓冲区中的某个项目。使用共享内存为两个进程实现彼得森算法,以使它们之间互斥。该解决方案应该没有同步问题。

生产者-消费者

彼得森的算法–

// code for producer (j)
  
// producer j is ready
// to produce an item
flag[j] = true;
  
// but consumer (i) can consume an item
turn = i;
  
// if consumer is ready to consume an item
// and if its consumer's turn
while (flag[i] == true && turn == i)
  
    { // then producer will wait }
  
    // otherwise producer will produce
    // an item and put it into buffer (critical Section)
  
    // Now, producer is out of critical section
    flag[j] = false;
    // end of code for producer
  
    //--------------------------------------------------------
    // code for consumer i
  
    // consumer i is ready
    // to consume an item
    flag[i] = true;
  
    // but producer (j) can produce an item
    turn = j;
  
    // if producer is ready to produce an item
    // and if its producer's turn
    while (flag[j] == true && turn == j)
  
        { // then consumer will wait }
  
        // otherwise consumer will consume
        // an item from buffer (critical Section)
  
        // Now, consumer is out of critical section
        flag[i] = false;
// end of code for consumer

彼得森算法的说明–

彼得森算法用于同步两个过程。它使用两个变量,大小为2的bool数组标志和一个int变量turn来完成此操作。
在解决方案中,i代表消费者,j代表生产者。最初,这些标志为假。当一个进程要执行其关键部分时,它将其标志设置为true并作为另一个进程的索引。这意味着该进程要执行,但将允许其他进程先运行。该过程执行繁忙的等待,直到另一个过程完成了它自己的关键部分。
此后,当前进程进入其关键部分,并从共享缓冲区中添加或删除随机数。完成关键部分后,它将自己的标志设置为false,表示它不再希望执行。

该程序在退出之前运行固定的时间。可以通过更改宏RT的值来更改该时间。

// C program to implement Peterson’s Algorithm
// for producer-consumer problem.
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define _BSD_SOURCE
#include 
#include 
  
#define BSIZE 8 // Buffer size
#define PWT 2 // Producer wait time limit
#define CWT 10 // Consumer wait time limit
#define RT 10 // Program run-time in seconds
  
int shmid1, shmid2, shmid3, shmid4;
key_t k1 = 5491, k2 = 5812, k3 = 4327, k4 = 3213;
bool* SHM1;
int* SHM2;
int* SHM3;
  
int myrand(int n) // Returns a random number between 1 and n
{
    time_t t;
    srand((unsigned)time(&t));
    return (rand() % n + 1);
}
  
int main()
{
    shmid1 = shmget(k1, sizeof(bool) * 2, IPC_CREAT | 0660); // flag
    shmid2 = shmget(k2, sizeof(int) * 1, IPC_CREAT | 0660); // turn
    shmid3 = shmget(k3, sizeof(int) * BSIZE, IPC_CREAT | 0660); // buffer
    shmid4 = shmget(k4, sizeof(int) * 1, IPC_CREAT | 0660); // time stamp
  
    if (shmid1 < 0 || shmid2 < 0 || shmid3 < 0 || shmid4 < 0) {
        perror("Main shmget error: ");
        exit(1);
    }
    SHM3 = (int*)shmat(shmid3, NULL, 0);
    int ix = 0;
    while (ix < BSIZE) // Initializing buffer
        SHM3[ix++] = 0;
  
    struct timeval t;
    time_t t1, t2;
    gettimeofday(&t, NULL);
    t1 = t.tv_sec;
  
    int* state = (int*)shmat(shmid4, NULL, 0);
    *state = 1;
    int wait_time;
  
    int i = 0; // Consumer
    int j = 1; // Producer
  
    if (fork() == 0) // Producer code
    {
        SHM1 = (bool*)shmat(shmid1, NULL, 0);
        SHM2 = (int*)shmat(shmid2, NULL, 0);
        SHM3 = (int*)shmat(shmid3, NULL, 0);
        if (SHM1 == (bool*)-1 || SHM2 == (int*)-1 || SHM3 == (int*)-1) {
            perror("Producer shmat error: ");
            exit(1);
        }
  
        bool* flag = SHM1;
        int* turn = SHM2;
        int* buf = SHM3;
        int index = 0;
  
        while (*state == 1) {
            flag[j] = true;
            printf("Producer is ready now.\n\n");
            *turn = i;
            while (flag[i] == true && *turn == i)
                ;
  
            // Critical Section Begin
            index = 0;
            while (index < BSIZE) {
                if (buf[index] == 0) {
                    int tempo = myrand(BSIZE * 3);
                    printf("Job %d has been produced\n", tempo);
                    buf[index] = tempo;
                    break;
                }
                index++;
            }
            if (index == BSIZE)
                printf("Buffer is full, nothing can be produced!!!\n");
            printf("Buffer: ");
            index = 0;
            while (index < BSIZE)
                printf("%d ", buf[index++]);
            printf("\n");
            // Critical Section End
  
            flag[j] = false;
            if (*state == 0)
                break;
            wait_time = myrand(PWT);
            printf("Producer will wait for %d seconds\n\n", wait_time);
            sleep(wait_time);
        }
        exit(0);
    }
  
    if (fork() == 0) // Consumer code
    {
        SHM1 = (bool*)shmat(shmid1, NULL, 0);
        SHM2 = (int*)shmat(shmid2, NULL, 0);
        SHM3 = (int*)shmat(shmid3, NULL, 0);
        if (SHM1 == (bool*)-1 || SHM2 == (int*)-1 || SHM3 == (int*)-1) {
            perror("Consumer shmat error:");
            exit(1);
        }
  
        bool* flag = SHM1;
        int* turn = SHM2;
        int* buf = SHM3;
        int index = 0;
        flag[i] = false;
        sleep(5);
        while (*state == 1) {
            flag[i] = true;
            printf("Consumer is ready now.\n\n");
            *turn = j;
            while (flag[j] == true && *turn == j)
                ;
  
            // Critical Section Begin
            if (buf[0] != 0) {
                printf("Job %d has been consumed\n", buf[0]);
                buf[0] = 0;
                index = 1;
                while (index < BSIZE) // Shifting remaining jobs forward
                {
                    buf[index - 1] = buf[index];
                    index++;
                }
                buf[index - 1] = 0;
            } else
                printf("Buffer is empty, nothing can be consumed!!!\n");
            printf("Buffer: ");
            index = 0;
            while (index < BSIZE)
                printf("%d ", buf[index++]);
            printf("\n");
            // Critical Section End
  
            flag[i] = false;
            if (*state == 0)
                break;
            wait_time = myrand(CWT);
            printf("Consumer will sleep for %d seconds\n\n", wait_time);
            sleep(wait_time);
        }
        exit(0);
    }
    // Parent process will now for RT seconds before causing child to terminate
    while (1) {
        gettimeofday(&t, NULL);
        t2 = t.tv_sec;
        if (t2 - t1 > RT) // Program will exit after RT seconds
        {
            *state = 0;
            break;
        }
    }
    // Waiting for both processes to exit
    wait();
    wait();
    printf("The clock ran out.\n");
    return 0;
}

输出:

Producer is ready now.

Job 9 has been produced
Buffer: 9 0 0 0 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 8 has been produced
Buffer: 9 8 0 0 0 0 0 0 
Producer will wait for 2 seconds

Producer is ready now.

Job 13 has been produced
Buffer: 9 8 13 0 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 23 has been produced
Buffer: 9 8 13 23 0 0 0 0 
Producer will wait for 1 seconds

Consumer is ready now.

Job 9 has been consumed
Buffer: 8 13 23 0 0 0 0 0 
Consumer will sleep for 9 seconds

Producer is ready now.

Job 15 has been produced
Buffer: 8 13 23 15 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 13 has been produced
Buffer: 8 13 23 15 13 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 11 has been produced
Buffer: 8 13 23 15 13 11 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 22 has been produced
Buffer: 8 13 23 15 13 11 22 0 
Producer will wait for 2 seconds

Producer is ready now.

Job 23 has been produced
Buffer: 8 13 23 15 13 11 22 23 
Producer will wait for 1 seconds

The clock ran out.