Python – 使用 Affin 进行情感分析
Afinn是由Finn Årup Nielsen开发的用于情感分析的最简单但最流行的词典。它包含 3300 多个单词,每个单词都有一个极性分数。在Python中,此词典有一个内置函数。
让我们看看它的语法——
安装库:
# code
print("GFG")
pip install afinn /
#instaalling in windows
pip3 install afinn /
#installing in linux
!pip install afinn
#installing in jupyter
代码:使用 Affin 进行情感分析的Python代码
#importing necessary libraries
from afinn import Afinn
import pandas as pd
#instantiate afinn
afn = Afinn()
#creating list sentences
news_df = ['les gens pensent aux chiens','i hate flowers',
'hes kind and smart','we are kind to good people']
# compute scores (polarity) and labels
scores = [afn.score(article) for article in news_df]
sentiment = ['positive' if score > 0
else 'negative' if score < 0
else 'neutral'
for score in scores]
# dataframe creation
df = pd.DataFrame()
df['topic'] = news_df
df['scores'] = scores
df['sentiments'] = sentiment
print(df)
输出:
topic scores sentiments
0 les gens pensent aux chiens 0.0 neutral
1 i hate flowers -3.0 negative
2 hes kind and smart 3.0 positive
3 we are kind to good people 5.0 positive
这个库包最好的部分是你还可以找到不同语言的分数情绪。
afn = Afinn(language = 'da')
#assigning 'da' danish to the object variable.
afn.score('du er den mest modbydelige tæve')
输出:
-5.0
因此,我们可以轻松地使用 Afinn 立即获得分数。