给定两个整数L和R ,任务是查找在[L,R]范围内具有素数位在素数位置和非素数在非素数位置的数字计数。
例子:
Input: L = 5, R = 22
Output: 7
Explanation: The numbers 6, 8, 9, 12, 13, 15, and 17 have prime digits at prime positions and non-prime digits at non-prime positions.
Input: L = 20, R = 29
Output: 0
Explanation: There are no numbers which have prime digits at prime positions and non-prime digits at non-prime positions.
天真的方法:解决问题的最简单方法是在[L,R]范围内进行迭代。对于每个第i个数字,请检查数字的数字是否在素数位置上是质数,而在非素数位置上不是质数。如果发现为真,则增加计数。最后,打印获得的计数。
时间复杂度: O(R – L +1)* sqrt(R)* log 10 (R)
辅助空间: O(1)
高效方法:为了优化上述方法,想法是使用Digit DP。以下是动态编程状态之间的递归关系:
If i is a prime at prime digits or non-prime at non-prime digits, then x = 1
pos: Stores position of digits
prime: Check if prime digits are present at prime positions and non-prime digits at non-prime positions are present or not.
st: check if a number contains any leading 0.
end: Maximum possible digits at current position
请按照以下步骤解决问题:
- 初始化一个4D数组,例如dp [pos] [st] [tight] [prime] 。
- 使用记忆(例如cntR)计算数字R的dp [pos] [st] [tight] [prime]的值。
- 用cntL表示,用记忆计算L – 1的dp [pos] [st] [tight] [prime]的值。
- 最后,打印(cntR – cntL)的值。
下面是上述方法的实现:
C++14
// C++ program for the above approach
#include
using namespace std;
// Store digits of a number
vector num;
// Store overlapping subproblems
long long int dp[19][2][2][19];
// Function to check if a
// number is prime or not
bool isPrime(long long int n)
{
// If n is less than
// or equal to 1
if (n <= 1)
return false;
// If n is less than
// or equal to 3
if (n <= 3)
return true;
// If n is a multiple of 2 or 3
if (n % 2 == 0 || n % 3 == 0)
return false;
// Iterate over the range [5, n]
for (long long int i = 5; i * i <= n;
i = i + 6) {
// If n is a multiple of i or (i + 2)
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Function to count the required
// numbers from the given range
long long cntNum(long long pos, long long st,
long long tight, long long prime)
{
// Base Case
if (pos == num.size())
return 1;
// If the subproblems already computed
if (dp[pos][st][tight][prime] != -1)
return dp[pos][st][tight][prime];
long long int res = 0;
// Stores maximum possible
// at current digits
long long end = (tight == 0) ? num[pos] : 9;
// Iterate over all possible digits
// at current position
for (long long i = 0; i <= end; i++) {
// Check if i is the maximum possible
// digit at current position or not
long long ntight = (i < end) ? 1 : tight;
// Check if a number contains
// leading 0s or not
long long int nzero = (i != 0) ? 1 : st;
// If number has only leading zeros
// and digit is non-zero
if ((nzero == 1) && isPrime(i) && isPrime(prime)) {
// Prime digits at prime positions
res += cntNum(pos + 1, nzero,
ntight, prime + 1);
}
if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {
// Non-prime digits at
// non-prime positions
res += cntNum(pos + 1, nzero,
ntight, prime + 1);
}
// If the number has only leading zeros
// and i is zero,
if (nzero == 0)
res += cntNum(pos + 1, nzero,
ntight, prime);
}
return dp[pos][st][tight][prime] = res;
}
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
long long int cntZeroRange(long long int b)
{
num.clear();
// Insert digits of a number, b
while (b > 0) {
num.push_back(b % 10);
b /= 10;
}
// Reversing the digits in num
reverse(num.begin(), num.end());
// Initializing dp with -1
memset(dp, -1, sizeof(dp));
long long int res = cntNum(0, 0, 0, 1);
// Returning the value
return res;
}
// Driver Code
int main()
{
// Given range, [L, R]
long long int L = 5, R = 22;
// Function Call
long long int res
= cntZeroRange(R) - cntZeroRange(L - 1);
// Print answer
cout << res << endl;
return 0;
}
Java
// Java program for the above approach
import java.util.*;
class GFG
{
// Store digits of a number
static Vector num = new Vector<>();
// Store overlapping subproblems
static int [][][][]dp = new int[19][2][2][19];
// Function to check if a
// number is prime or not
static boolean isPrime(int n)
{
// If n is less than
// or equal to 1
if (n <= 1)
return false;
// If n is less than
// or equal to 3
if (n <= 3)
return true;
// If n is a multiple of 2 or 3
if (n % 2 == 0 || n % 3 == 0)
return false;
// Iterate over the range [5, n]
for (int i = 5; i * i <= n;
i = i + 6) {
// If n is a multiple of i or (i + 2)
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Function to count the required
// numbers from the given range
static int cntNum(int pos, int st,
int tight, int prime)
{
// Base Case
if (pos == num.size())
return 1;
// If the subproblems already computed
if (dp[pos][st][tight][prime] != -1)
return dp[pos][st][tight][prime];
int res = 0;
// Stores maximum possible
// at current digits
int end = (tight == 0) ? num.get(pos) : 9;
// Iterate over all possible digits
// at current position
for (int i = 0; i <= end; i++)
{
// Check if i is the maximum possible
// digit at current position or not
int ntight = (i < end) ? 1 : tight;
// Check if a number contains
// leading 0s or not
int nzero = (i != 0) ? 1 : st;
// If number has only leading zeros
// and digit is non-zero
if ((nzero == 1) && isPrime(i) && isPrime(prime)) {
// Prime digits at prime positions
res += cntNum(pos + 1, nzero,
ntight, prime + 1);
}
if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {
// Non-prime digits at
// non-prime positions
res += cntNum(pos + 1, nzero,
ntight, prime + 1);
}
// If the number has only leading zeros
// and i is zero,
if (nzero == 0)
res += cntNum(pos + 1, nzero,
ntight, prime);
}
return dp[pos][st][tight][prime] = res;
}
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
static int cntZeroRange(int b)
{
num.clear();
// Insert digits of a number, b
while (b > 0) {
num.add(b % 10);
b /= 10;
}
// Reversing the digits in num
Collections.reverse(num);
// Initializing dp with -1
for (int i = 0; i < 19; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
for (int l = 0; l < 19; l++)
dp[i][j][k][l] = -1;
int res = cntNum(0, 0, 0, 1);
// Returning the value
return res;
}
// Driver Code
public static void main(String[] args)
{
// Given range, [L, R]
int L = 5, R = 22;
// Function Call
int res
= cntZeroRange(R) - cntZeroRange(L - 1);
// Print answer
System.out.print(res +"\n");
}
}
// This code is contributed by 29AjayKumar
Python3
# Python3 program for the above approach
from math import ceil, sqrt
# Function to check if a
# number is prime or not
def isPrime(n):
# If n is less than
# or equal to 1
if (n <= 1):
return False
# If n is less than
# or equal to 3
if (n <= 3):
return True
# If n is a multiple of 2 or 3
if (n % 2 == 0 or n % 3 == 0):
return False
# Iterate over the range [5, n]
for i in range(5, ceil(sqrt(n)), 6):
# If n is a multiple of i or (i + 2)
if (n % i == 0 or n % (i + 2) == 0):
return False
return True
# Function to count the required
# numbers from the given range
def cntNum(pos, st, tight, prime):
global dp, num
if (pos == len(num)):
return 1
# If the subproblems already computed
if (dp[pos][st][tight][prime] != -1):
return dp[pos][st][tight][prime]
res = 0
# Stores maximum possible
# at current digits
end = num[pos] if (tight == 0) else 9
# Iterate over all possible digits
# at current position
for i in range(end + 1):
# Check if i is the maximum possible
# digit at current position or not
ntight = 1 if (i < end) else tight
# Check if a number contains
# leading 0s or not
nzero = 1 if (i != 0) else st
# If number has only leading zeros
# and digit is non-zero
if ((nzero == 1) and isPrime(i) and
isPrime(prime)):
# Prime digits at prime positions
res += cntNum(pos + 1, nzero, ntight,
prime + 1)
if ((nzero == 1) and isPrime(i) == False and
isPrime(prime) == False):
# Non-prime digits at
# non-prime positions
res += cntNum(pos + 1, nzero, ntight,
prime + 1)
# If the number has only leading zeros
# and i is zero,
if (nzero == 0):
res += cntNum(pos + 1, nzero,
ntight, prime)
dp[pos][st][tight][prime] = res
return dp[pos][st][tight][prime]
# Function to find count of numbers in
# range [0, b] whose digits are prime
# at prime and non-prime at non-prime pos
def cntZeroRange(b):
global num, dp
num.clear()
while (b > 0):
num.append(b % 10)
b //= 10
# Reversing the digits in num
num = num[::-1]
# print(num)
dp = [[[[-1 for i in range(19)]
for i in range(2)]
for i in range(2)]
for i in range(19)]
res = cntNum(0, 0, 0, 1)
# Returning the value
return res
# Driver Code
if __name__ == '__main__':
dp = [[[[-1 for i in range(19)]
for i in range(2)]
for i in range(2)]
for i in range(19)]
L, R, num = 5, 22, []
# Function Call
res = cntZeroRange(R) - cntZeroRange(L - 1)
# Print answer
print(res)
# This code is contributed by mohit kumar 29
C#
// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
// Store digits of a number
static List num = new List();
// Store overlapping subproblems
static int[, , , ] dp = new int[19, 2, 2, 19];
// Function to check if a
// number is prime or not
static bool isPrime(int n)
{
// If n is less than
// or equal to 1
if (n <= 1)
return false;
// If n is less than
// or equal to 3
if (n <= 3)
return true;
// If n is a multiple of 2 or 3
if (n % 2 == 0 || n % 3 == 0)
return false;
// Iterate over the range [5, n]
for (int i = 5; i * i <= n; i = i + 6) {
// If n is a multiple of i or (i + 2)
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
// Function to count the required
// numbers from the given range
static int cntNum(int pos, int st, int tight, int prime)
{
// Base Case
if (pos == num.Count)
return 1;
// If the subproblems already computed
if (dp[pos, st, tight, prime] != -1)
return dp[pos, st, tight, prime];
int res = 0;
// Stores maximum possible
// at current digits
int end = (tight == 0) ? num[pos] : 9;
// Iterate over all possible digits
// at current position
for (int i = 0; i <= end; i++) {
// Check if i is the maximum possible
// digit at current position or not
int ntight = (i < end) ? 1 : tight;
// Check if a number contains
// leading 0s or not
int nzero = (i != 0) ? 1 : st;
// If number has only leading zeros
// and digit is non-zero
if ((nzero == 1) && isPrime(i)
&& isPrime(prime)) {
// Prime digits at prime positions
res += cntNum(pos + 1, nzero, ntight,
prime + 1);
}
if ((nzero == 1) && !isPrime(i)
&& !isPrime(prime)) {
// Non-prime digits at
// non-prime positions
res += cntNum(pos + 1, nzero, ntight,
prime + 1);
}
// If the number has only leading zeros
// and i is zero,
if (nzero == 0)
res += cntNum(pos + 1, nzero, ntight,
prime);
}
return dp[pos, st, tight, prime] = res;
}
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
static int cntZeroRange(int b)
{
num.Clear();
// Insert digits of a number, b
while (b > 0) {
num.Add(b % 10);
b /= 10;
}
// Reversing the digits in num
num.Reverse();
// Initializing dp with -1
for (int i = 0; i < 19; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
for (int l = 0; l < 19; l++)
dp[i, j, k, l] = -1;
int res = cntNum(0, 0, 0, 1);
// Returning the value
return res;
}
// Driver Code
public static void Main(string[] args)
{
// Given range, [L, R]
int L = 5, R = 22;
// Function Call
int res = cntZeroRange(R) - cntZeroRange(L - 1);
// Print answer
Console.WriteLine(res + "\n");
}
}
// This code is contributed by chitranayal.
7
时间复杂度: O(log 10 (R)* log 10 (L)sqrt(log 10 (R))* 10 * 4))
辅助空间: O(log 10 (R)* log 10 (L)* 4)