如何在 Pandas 中执行 SUMIF函数?
sumif()函数用于对数据框中的一组项目进行求和运算,它可以应用于单列和多列,我们也可以将此函数与 groupby函数一起使用。
方法 1:使用 groupby() 对所有列进行 SUMIF
此函数用于显示所有列相对于分组列的总和
Syntax: dataframe.groupby(‘group_column’).sum()
where
- dataframe is the input dataframe
- group_column is the column in dataframe to be grouped
- sum() function is to perform the sum operation
创建包含 4 列的学生数据框
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha',
'ramya', 'sravan', 'jyothika',
'harsha', 'ramya', 'sravan', 'jyothika',
'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# display dataframe
print(data)
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of all columns group by name
print(data.groupby('name').sum())
# find sum of all columns group by subjects
print(data.groupby('subjects').sum())
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of columns group by
# name with internal marks column
print(data.groupby('name')['internal marks'].sum())
print("---------------")
# find sum of columns group by
# name with external marks column
print(data.groupby('name')['external marks'].sum())
print("---------------")
# find sum of columns group by
# subjects with internal marks column
print(data.groupby('subjects')['internal marks'].sum())
print("---------------")
# find sum of columns group by
# subjects with external marks column
print(data.groupby('subjects')['external marks'].sum())
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of columns group by name with
# external marks and internal marks column
print(data.groupby('name')[['external marks',
'internal marks']].sum())
print("---------------")
# find sum of columns group by subjects
# with external marks and internal marks column
print(data.groupby('subjects')[['external marks',
'internal marks']].sum())
输出:
通过对特定列进行分组来执行所有列的总和
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of all columns group by name
print(data.groupby('name').sum())
# find sum of all columns group by subjects
print(data.groupby('subjects').sum())
输出:
方法 2:一列上的 SUMIF函数
在这里,我们通过将某一列与一列分组来对某一列执行 sumif 操作
Syntax: dataframe.groupby(‘group_column’)[‘column_name].sum()
where
- dataframe is the input dataframe
- group_column is the column in dataframe to be grouped
- column_name is to get sum of this column with respect to grouped column
- sum() function is to perform the sum operation
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of columns group by
# name with internal marks column
print(data.groupby('name')['internal marks'].sum())
print("---------------")
# find sum of columns group by
# name with external marks column
print(data.groupby('name')['external marks'].sum())
print("---------------")
# find sum of columns group by
# subjects with internal marks column
print(data.groupby('subjects')['internal marks'].sum())
print("---------------")
# find sum of columns group by
# subjects with external marks column
print(data.groupby('subjects')['external marks'].sum())
输出:
方法3:多列SUMIF操作
这里我们将在多列上使用 sumif 操作。
Syntax: dataframe.groupby(‘group_column’)[[‘column_names’]].sum()
where,
- dataframe is the input dataframe
- group_column is the column in dataframe to be grouped
- column_names are to get sum of these columns with respect to grouped column
- sum() function is to perform the sum operation
Python3
# import pandas module
import pandas as pd
# create dataframe with 4 columns
data = pd.DataFrame({
"name": ['sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya',
'sravan', 'jyothika', 'harsha', 'ramya'],
"subjects": ['java', 'java', 'java', 'python',
'python', 'python', 'html/php',
'html/php', 'html/php', 'php/js',
'php/js', 'php/js'],
"internal marks": [98, 79, 89, 97, 82, 98, 90,
87, 78, 89, 93, 94],
"external marks": [88, 71, 89, 97, 82, 98, 80,
87, 71, 89, 92, 64],
})
# find sum of columns group by name with
# external marks and internal marks column
print(data.groupby('name')[['external marks',
'internal marks']].sum())
print("---------------")
# find sum of columns group by subjects
# with external marks and internal marks column
print(data.groupby('subjects')[['external marks',
'internal marks']].sum())
输出: