给定一个单链列表,请从链列表中选择一个随机节点(如果列表中有N个节点,则选择一个节点的概率应为1 / N)。系统会为您提供一个随机数生成器。
下面是一个简单的解决方案
1)通过遍历列表来计算节点数。
2)再次遍历列表,并以1 / N的概率选择每个节点。可以通过为第i个节点生成一个从0到Ni的随机数,然后仅在生成的数字等于0(或从0到Ni的任何其他固定数)的情况下选择第i个节点节点来完成选择。
通过以上方案,我们得到了统一的概率。
i = 1, probability of selecting first node = 1/N
i = 2, probability of selecting second node =
[probability that first node is not selected] *
[probability that second node is selected]
= ((N-1)/N)* 1/(N-1)
= 1/N
同样,其他选择其他节点的概率为1 / N
上述解决方案需要两次遍历链表。
如何选择只允许一个遍历的随机节点?
这个想法是使用储层采样。以下是步骤。这是“水库采样”的简单版本,因为我们只需要选择一个键即可,而不是k个键。
(1) Initialize result as first node
result = head->key
(2) Initialize n = 2
(3) Now one by one consider all nodes from 2nd node onward.
(3.a) Generate a random number from 0 to n-1.
Let the generated random number is j.
(3.b) If j is equal to 0 (we could choose other fixed number
between 0 to n-1), then replace result with current node.
(3.c) n = n+1
(3.d) current = current->next
下面是上述算法的实现。
C++
/* C++ program to randomly select a node from a singly
linked list */
#include
#include
#include
#include
using namespace std;
/* Link list node */
class Node
{
public:
int key;
Node* next;
void printRandom(Node*);
void push(Node**, int);
};
// A reservoir sampling based function to print a
// random node from a linked list
void Node::printRandom(Node *head)
{
// IF list is empty
if (head == NULL)
return;
// Use a different seed value so that we don't get
// same result each time we run this program
srand(time(NULL));
// Initialize result as first node
int result = head->key;
// Iterate from the (k+1)th element to nth element
Node *current = head;
int n;
for (n = 2; current != NULL; n++)
{
// change result with probability 1/n
if (rand() % n == 0)
result = current->key;
// Move to next node
current = current->next;
}
cout<<"Randomly selected key is \n"<< result;
}
/* BELOW FUNCTIONS ARE JUST UTILITY TO TEST */
/* A utility function to create a new node */
Node* newNode(int new_key)
{
// allocate node
Node* new_node = (Node*) malloc(sizeof( Node));
/// put in the key
new_node->key = new_key;
new_node->next = NULL;
return new_node;
}
/* A utility function to insert a node at the beginning
of linked list */
void Node:: push(Node** head_ref, int new_key)
{
/* allocate node */
Node* new_node = new Node;
/* put in the key */
new_node->key = new_key;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// Driver program to test above functions
int main()
{
Node n1;
Node *head = NULL;
n1.push(&head, 5);
n1.push(&head, 20);
n1.push(&head, 4);
n1.push(&head, 3);
n1.push(&head, 30);
n1.printRandom(head);
return 0;
}
// This code is contributed by SoumikMondal
C
/* C program to randomly select a node from a singly
linked list */
#include
#include
#include
/* Link list node */
struct Node
{
int key;
struct Node* next;
};
// A reservoir sampling based function to print a
// random node from a linked list
void printRandom(struct Node *head)
{
// IF list is empty
if (head == NULL)
return;
// Use a different seed value so that we don't get
// same result each time we run this program
srand(time(NULL));
// Initialize result as first node
int result = head->key;
// Iterate from the (k+1)th element to nth element
struct Node *current = head;
int n;
for (n=2; current!=NULL; n++)
{
// change result with probability 1/n
if (rand() % n == 0)
result = current->key;
// Move to next node
current = current->next;
}
printf("Randomly selected key is %d\n", result);
}
/* BELOW FUNCTIONS ARE JUST UTILITY TO TEST */
/* A utility function to create a new node */
struct Node *newNode(int new_key)
{
/* allocate node */
struct Node* new_node =
(struct Node*) malloc(sizeof(struct Node));
/* put in the key */
new_node->key = new_key;
new_node->next = NULL;
return new_node;
}
/* A utility function to insert a node at the beginning
of linked list */
void push(struct Node** head_ref, int new_key)
{
/* allocate node */
struct Node* new_node = new Node;
/* put in the key */
new_node->key = new_key;
/* link the old list off the new node */
new_node->next = (*head_ref);
/* move the head to point to the new node */
(*head_ref) = new_node;
}
// Driver program to test above functions
int main()
{
struct Node *head = NULL;
push(&head, 5);
push(&head, 20);
push(&head, 4);
push(&head, 3);
push(&head, 30);
printRandom(head);
return 0;
}
Java
// Java program to select a random node from singly linked list
import java.util.*;
// Linked List Class
class LinkedList {
static Node head; // head of list
/* Node Class */
static class Node {
int data;
Node next;
// Constructor to create a new node
Node(int d) {
data = d;
next = null;
}
}
// A reservoir sampling based function to print a
// random node from a linked list
void printrandom(Node node) {
// If list is empty
if (node == null) {
return;
}
// Use a different seed value so that we don't get
// same result each time we run this program
Math.abs(UUID.randomUUID().getMostSignificantBits());
// Initialize result as first node
int result = node.data;
// Iterate from the (k+1)th element to nth element
Node current = node;
int n;
for (n = 2; current != null; n++) {
// change result with probability 1/n
if (Math.random() % n == 0) {
result = current.data;
}
// Move to next node
current = current.next;
}
System.out.println("Randomly selected key is " + result);
}
// Driver program to test above functions
public static void main(String[] args) {
LinkedList list = new LinkedList();
list.head = new Node(5);
list.head.next = new Node(20);
list.head.next.next = new Node(4);
list.head.next.next.next = new Node(3);
list.head.next.next.next.next = new Node(30);
list.printrandom(head);
}
}
// This code has been contributed by Mayank Jaiswal
Python
# Python program to randomly select a node from singly
# linked list
import random
# Node class
class Node:
# Constructor to initialize the node object
def __init__(self, data):
self.data= data
self.next = None
class LinkedList:
# Function to initialize head
def __init__(self):
self.head = None
# A reservoir sampling based function to print a
# random node from a linkd list
def printRandom(self):
# If list is empty
if self.head is None:
return
if self.head and not self.head.next:
print "Randomly selected key is %d" %(self.head.data)
# Use a different seed value so that we don't get
# same result each time we run this program
random.seed()
# Initialize result as first node
result = self.head.data
# Iterate from the (k+1)th element nth element
# because we iterate from (k+1)th element, or
# the first node will be picked more easily
current = self.head.next
n = 2
while(current is not None):
# change result with probability 1/n
if (random.randrange(n) == 0 ):
result = current.data
# Move to next node
current = current.next
n += 1
print "Randomly selected key is %d" %(result)
# Function to insert a new node at the beginning
def push(self, new_data):
new_node = Node(new_data)
new_node.next = self.head
self.head = new_node
# Utility function to print the linked LinkedList
def printList(self):
temp = self.head
while(temp):
print temp.data,
temp = temp.next
# Driver program to test above function
llist = LinkedList()
llist.push(5)
llist.push(20)
llist.push(4)
llist.push(3)
llist.push(30)
llist.printRandom()
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)
C#
// C# program to select a random node
// from singly linked list
using System;
// Linked List Class
public class LinkedList
{
Node head; // head of list
/* Node Class */
public class Node
{
public int data;
public Node next;
// Constructor to create a new node
public Node(int d)
{
data = d;
next = null;
}
}
// A reservoir sampling based function to print a
// random node from a linked list
void printrandom(Node node)
{
// If list is empty
if (node == null)
{
return;
}
// Use a different seed value so that we don't get
// same result each time we run this program
//Math.abs(UUID.randomUUID().getMostSignificantBits());
// Initialize result as first node
int result = node.data;
// Iterate from the (k+1)th element to nth element
Node current = node;
int n;
for (n = 2; current != null; n++)
{
// change result with probability 1/n
if (new Random().Next() % n == 0)
{
result = current.data;
}
// Move to next node
current = current.next;
}
Console.WriteLine("Randomly selected key is " +
result);
}
// Driver Code
public static void Main(String[] args)
{
LinkedList list = new LinkedList();
list.head = new Node(5);
list.head.next = new Node(20);
list.head.next.next = new Node(4);
list.head.next.next.next = new Node(3);
list.head.next.next.next.next = new Node(30);
list.printrandom(list.head);
}
}
// This code is contributed by 29AjayKumar
请注意,以上程序基于随机函数的结果,可能会产生不同的输出。
这是如何运作的?
令列表中总共有N个节点。从最后一个节点更容易理解。
最后一个节点仅是结果1 / N的概率[对于最后一个或第N个节点,我们生成一个介于0到N-1之间的随机数,如果生成的数目为0(或任何其他固定数),则将最后一个节点作为结果
倒数第二个节点为结果的概率也应为1 / N。
The probability that the second last node is result
= [Probability that the second last node replaces result] X
[Probability that the last node doesn't replace the result]
= [1 / (N-1)] * [(N-1)/N]
= 1/N
同样,我们可以显示第三最后节点和其他节点的概率。