使用Python为文件创建倒排索引
倒排索引是一种索引数据结构,用于存储从内容(例如单词或数字)到其在文档或一组文档中的位置的映射。简而言之,它是一种类似于哈希图的数据结构,可将您从单词引导到文档或网页。
创建倒排索引
我们将创建一个单词级别的倒排索引,也就是说,它将返回单词所在的行列表。我们还将创建一个字典,其中键值表示文件中存在的单词,字典的值将由包含它们所在行号的列表表示。要在 Jupiter notebook 中创建文件,请使用魔法函数:
%%writefile file.txt
This is the first word.
This is the second text, Hello! How are you?
This is the third, this is it now.
这将创建一个名为 file.txt 的文件,其中将包含以下内容。
读取文件:
Python3
# this will open the file
file = open('file.txt', encoding='utf8')
read = file.read()
file.seek(0)
read
# to obtain the
# number of lines
# in file
line = 1
for word in read:
if word == '\n':
line += 1
print("Number of lines in file is: ", line)
# create a list to
# store each line as
# an element of list
array = []
for i in range(line):
array.append(file.readline())
array
Python3
punc = '''!()-[]{};:'"\, <>./?@#$%^&*_~'''
for ele in read:
if ele in punc:
read = read.replace(ele, " ")
read
# to maintain uniformity
read=read.lower()
read
Python3
from nltk.tokenize import word_tokenize
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
for i in range(1):
# this will convert
# the word into tokens
text_tokens = word_tokenize(read)
tokens_without_sw = [
word for word in text_tokens if not word in stopwords.words()]
print(tokens_without_sw)
Python3
dict = {}
for i in range(line):
check = array[i].lower()
for item in tokens_without_sw:
if item in check:
if item not in dict:
dict[item] = []
if item in dict:
dict[item].append(i+1)
dict
输出:
Number of lines in file is: 3
['This is the first word.\n',
'This is the second text, Hello! How are you?\n',
'This is the third, this is it now.']
使用的功能:
- 打开:用于打开文件。
- read:该函数用于读取文件的内容。
- seek(0):将光标返回到文件的开头。
删除标点符号:
Python3
punc = '''!()-[]{};:'"\, <>./?@#$%^&*_~'''
for ele in read:
if ele in punc:
read = read.replace(ele, " ")
read
# to maintain uniformity
read=read.lower()
read
输出:
'this is the first word \n
this is the second text hello how are you \n
this is the third this is it now '
通过删除停用词来清理数据:
停用词是那些没有情感的词,可以安全地忽略而不牺牲句子的含义。
Python3
from nltk.tokenize import word_tokenize
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
for i in range(1):
# this will convert
# the word into tokens
text_tokens = word_tokenize(read)
tokens_without_sw = [
word for word in text_tokens if not word in stopwords.words()]
print(tokens_without_sw)
输出:
['first', 'word', 'second', 'text', 'hello', 'third']
创建倒排索引:
Python3
dict = {}
for i in range(line):
check = array[i].lower()
for item in tokens_without_sw:
if item in check:
if item not in dict:
dict[item] = []
if item in dict:
dict[item].append(i+1)
dict
输出:
{'first': [1],
'word': [1],
'second': [2],
'text': [2],
'hello': [2],
'third': [3]}