TensorFlow – Python中的 linspace()
TensorFlow 是 Google 设计的一个开源Python库,用于开发机器学习模型和深度学习神经网络。在多次使用 TensorFlow 时,我们需要在一个区间内生成均匀间隔的值。
- tensorflow.linspace(): This method takes starting tensor, ending tensor, number of values and axis and returns a Tensor with specified number of evenly spaced values.
示例 1:
python3
# importing the library
import tensorflow as tf
# Initializing Input
start = tf.constant(1, dtype = tf.float64)
end = tf.constant(5, dtype = tf.float64)
num = 5
# Printing the Input
print("start: ", start)
print("end: ", end)
print("num: ", num)
# Getting evenly spaced values
res = tf.linspace(start, end, num)
# Printing the resulting tensor
print("Result: ", res)
python3
# importing the library
import tensorflow as tf
# Initializing Input
start = tf.constant((1, 15), dtype = tf.float64)
end = tf.constant((10, 35), dtype = tf.float64)
num = 5
# Printing the Input
print("start: ", start)
print("end: ", end)
print("num: ", num)
# Getting evenly spaced values
res = tf.linspace(start, end, num, axis = 0)
# Printing the resulting tensor
print("Result 1: ", res)
# Getting evenly spaced values
res = tf.linspace(start, end, num, axis = 1)
# Printing the resulting tensor
print("Result 2: ", res)
输出:
start: tf.Tensor(1.0, shape=(), dtype=float64)
end: tf.Tensor(5.0, shape=(), dtype=float64)
num: 5
Result: tf.Tensor([1. 2. 3. 4. 5.], shape=(5, ), dtype=float64)
示例 2:此示例使用二维张量,并且在提供不同的轴值时,将生成不同的张量。夜间版本目前允许这种类型的均匀间隔值生成。
蟒蛇3
# importing the library
import tensorflow as tf
# Initializing Input
start = tf.constant((1, 15), dtype = tf.float64)
end = tf.constant((10, 35), dtype = tf.float64)
num = 5
# Printing the Input
print("start: ", start)
print("end: ", end)
print("num: ", num)
# Getting evenly spaced values
res = tf.linspace(start, end, num, axis = 0)
# Printing the resulting tensor
print("Result 1: ", res)
# Getting evenly spaced values
res = tf.linspace(start, end, num, axis = 1)
# Printing the resulting tensor
print("Result 2: ", res)
输出:
start: tf.Tensor([ 1. 15.], shape=(2, ), dtype=float64)
end: tf.Tensor([10. 35.], shape=(2, ), dtype=float64)
num: 5
Result 1: tf.Tensor(
[[ 1. 15. ]
[ 3.25 20. ]
[ 5.5 25. ]
[ 7.75 30. ]
[10. 35. ]], shape=(5, 2), dtype=float64)
Result 2: tf.Tensor(
[[ 1. 3.25 5.5 7.75 10. ]
[15. 20. 25. 30. 35. ]], shape=(2, 5), dtype=float64)