📅  最后修改于: 2020-06-03 01:05:42             🧑  作者: Mango
numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None) : 按间隔均匀返回数字空间。与arange类似,但不使用step而是使用样本编号。
参数:
->start:[可选]间隔范围的开始。默认情况下开始= 0
->stop:间隔范围的结尾
-> restep:如果为True,则返回(样本,步进)。通过退潮步=假
-> num:[int,可选]要生成的样本数
-> dtype:输出数组的类型
返回:
ndarray
代码1:解释linspace函数
# Python编程说明numpy.linspace方法
import numpy as geek
# 重新设置为True
print("B\n", geek.linspace(2.0, 3.0, num=5, retstep=True), "\n")
# 远程评估sin()
x = geek.linspace(0, 2, 10)
print("A\n", geek.sin(x))
输出:
B
(array([[2.,
2.25,2.5,2.75,3 .]),0.25)
A [0. 0.22039774 0.42995636 0.6183698 0.77637192 0.8961922
0.9719379 0.99988386 0.9786557 0.90929743]
代码2:使用matplotlib模块– pylab的numpy.linspace()的图形表示
# numpy.linspace()的图形表示
import numpy as geek
import pylab as p
# Start = 0
# End = 2
# Samples to generate = 10
x1 = geek.linspace(0, 2, 10, endpoint = False)
y1 = geek.ones(10)
p.plot(x1, y1, '*')
p.xlim(-0.2, 1.8)
输出:
代码3:使用pylab的numpy.linspace()的图形表示
# numpy.linspace()的图形表示
import numpy as geek
import pylab as p
# Start = 0
# End = 2
# Samples to generate = 15
x1 = geek.linspace(0, 2, 15, endpoint = True)
y1 = geek.zeros(15)
p.plot(x1, y1, 'o')
p.xlim(-0.2, 2.1)
输出: