📜  计算分裂N的方法!分为两个不同的互质因素

📅  最后修改于: 2021-04-30 02:21:09             🧑  作者: Mango

给定整数N ,任务是找到路数N!可以分为两个不同的因子AB ,使得AB是互素的。由于答案可能非常大,因此请以10 9 + 7为模数打印。

例子:

天真的方法:最简单的方法是计算N的阶乘并生成其所有因子,并检查是否有任何一对因子(i,j)的GCD (i,j)== 1

时间复杂度: O(√N!)
辅助空间: O(1)

高效方法:为了优化上述方法,其思想是找到N的不同素数因子,然后计算将其分为两个不同的互素因子AB的方法。请按照以下步骤解决问题:

  • 每个正整数都可以表示为素数幂的乘积(素数分解)。因此, N的每个可能值都可以表示为N = 2 p ×3 q ×5 r …..(p≥0,q≥0,r≥0)
  • 现在,任务是将N分为两个不同的互质因子。可以通过每次将N的素数分解中的每个项分配为两个可能的组合来完成。

插图:

请按照以下步骤解决问题:

  1. N的素数分解包含所有小于或等于N的素数。
  2. 如果x是质数小于或等于N的数,则方式数N! (阶乘)可以分为两个不同的互素因数,它们等于2 x – 1
  3. 预先计算的素数的数目∀N≤N使用埃拉托塞尼的筛,并将它们存储在数组中。
  4. 要对10 9 + 7取模,请使用模幂,即x x y %p

下面是上述方法的实现:

C++
// C++ Program for the above approach
#include 
using namespace std;
 
// Maximum value of N
#define MAXN 1000000
 
// Stores at each indices if
// given number is prime or not
int is_prime[MAXN] = { 0 };
 
// Stores count_of_primes
int count_of_primes[MAXN] = { 0 };
 
// Function to generate primes
// using Sieve of Eratsothenes
void sieve()
{
    for (int i = 3; i < MAXN; i += 2) {
 
        // Assume all odds are primes
        is_prime[i] = 1;
    }
 
    for (int i = 3; i * i < MAXN; i += 2) {
 
        // If a prime is encountered
        if (is_prime[i])
 
            for (int j = i * i; j < MAXN;
                 j += i) {
 
                // Mark all its multiples
                // as non-prime
                is_prime[j] = 0;
            }
    }
 
    is_prime[2] = 1;
 
    // Count primes <= MAXN
    for (int i = 1; i < MAXN; i++)
        count_of_primes[i]
            = count_of_primes[i - 1]
              + is_prime[i];
}
 
// Function to calculate (x ^ y) % p
// in O(log y)
long long int power(long long int x,
                    long long int y,
                    long long int p)
{
    long long result = 1;
    while (y > 0) {
        if (y & 1 == 1)
            result = (result * x) % p;
        x = (x * x) % p;
        y >>= 1;
    }
    return result;
}
 
// Utility function to count the number of ways
// N! can be split into co-prime factors
void numberOfWays(int N)
{
    long long int count
        = count_of_primes[N] - 1;
    long long int mod = 1000000007;
    long long int answer
        = power(2, count, mod);
 
    if (N == 1)
        answer = 0;
 
    cout << answer;
}
 
// Driver Code
int main()
{
    // Calling sieve function
    sieve();
 
    // Given N
    int N = 7;
 
    // Function call
    numberOfWays(N);
 
    return 0;
}


Java
// Java Program for the above approach
import java.util.*;
 
class GFG {
 
    // Maximum value of N
    static final int MAXN = 1000000;
 
    // Stores at each indices if
    // given number is prime or not
    static int is_prime[];
 
    // Stores count_of_primes
    static int count_of_primes[];
 
    // Function to generate primes
    // using Sieve of Eratsothenes
    static void sieve()
    {
        is_prime = new int[MAXN];
        count_of_primes = new int[MAXN];
        Arrays.fill(is_prime, 0);
        Arrays.fill(count_of_primes, 0);
 
        for (int i = 3; i < MAXN; i += 2) {
 
            // Assume all odds are primes
            is_prime[i] = 1;
        }
 
        for (int i = 3; i * i < MAXN; i += 2) {
 
            // If a prime is encountered
            if (is_prime[i] == 1) {
                for (int j = i * i; j < MAXN;
                     j += i) {
                    // MArk all its multiples
                    // as non-prime
                    is_prime[j] = 0;
                }
            }
        }
 
        is_prime[2] = 1;
 
        // Count all primes upto MAXN
        for (int i = 1; i < MAXN; i++)
            count_of_primes[i]
                = count_of_primes[i - 1] + is_prime[i];
    }
 
    // Function to calculate (x ^ y) % p
    // in O(log y)
    static long power(long x, long y, long p)
    {
        long result = 1;
        while (y > 0) {
            if ((y & 1) == 1)
                result = (result * x) % p;
            x = (x * x) % p;
            y >>= 1;
        }
        return result;
    }
 
    // Utility function to count the number of
    // ways N! can be split into two co-prime factors
    static void numberOfWays(int N)
    {
        long count = count_of_primes[N] - 1;
        long mod = 1000000007;
        long answer = power(2, count, mod);
        if (N == 1)
            answer = 0;
        long ans = answer;
        System.out.println(ans);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Calling sieve function
        sieve();
 
        // Given N
        int N = 7;
 
        // Function call
        numberOfWays(N);
    }
}


Python3
# Python3 program for the above approach
import math
 
# Maximum value of N
MAXN = 1000000
 
# Stores at each indices if
# given number is prime or not
is_prime = [0] * MAXN
 
# Stores count_of_primes
count_of_primes = [0] * MAXN
 
# Function to generate primes
# using Sieve of Eratsothenes
def sieve():
     
    for i in range(3, MAXN, 2):
         
        # Assume all odds are primes
        is_prime[i] = 1
 
    for i in range(3, int(math.sqrt(MAXN)), 2):
 
        # If a prime is encountered
        if is_prime[i]:
            for j in range(i * i, MAXN, i):
 
                # Mark all its multiples
                # as non-prime
                is_prime[j] = 0
 
    is_prime[2] = 1
 
    # Count primes <= MAXN
    for i in range(1, MAXN):
        count_of_primes[i] = (count_of_primes[i - 1] +
                                     is_prime[i])
 
# Function to calculate (x ^ y) % p
# in O(log y)
def power(x, y, p):
   
    result = 1
    while (y > 0):
        if y & 1 == 1:
            result = (result * x) % p
             
        x = (x * x) % p
        y >>= 1
 
    return result
 
# Utility function to count the number of ways
# N! can be split into co-prime factors
def numberOfWays(N):
   
    count = count_of_primes[N] - 1
    mod = 1000000007
    answer = power(2, count, mod)
 
    if N == 1:
        answer = 0
 
    print(answer)
 
# Driver Code
if __name__ == "__main__":
   
    # Calling sieve function
    sieve()
 
    # Given N
    N = 7
 
    # Function call
    numberOfWays(N)
 
# This code is contributed by akhilsaini


C#
// C# program for the above approach
using System;
 
class GFG{
 
// Maximum value of N
static int MAXN = 1000000;
 
// Stores at each indices if
// given number is prime or not
static int[] is_prime;
 
// Stores count_of_primes
static int[] count_of_primes;
 
// Function to generate primes
// using Sieve of Eratsothenes
static void sieve()
{
    is_prime = new int[MAXN];
    count_of_primes = new int[MAXN];
    Array.Fill(is_prime, 0);
    Array.Fill(count_of_primes, 0);
 
    for(int i = 3; i < MAXN; i += 2)
    {
         
        // Assume all odds are primes
        is_prime[i] = 1;
    }
 
    for(int i = 3; i * i < MAXN; i += 2)
    {
         
        // If a prime is encountered
        if (is_prime[i] == 1)
        {
            for(int j = i * i; j < MAXN; j += i)
            {
                 
                // MArk all its multiples
                // as non-prime
                is_prime[j] = 0;
            }
        }
    }
 
    is_prime[2] = 1;
 
    // Count all primes upto MAXN
    for(int i = 1; i < MAXN; i++)
        count_of_primes[i] = count_of_primes[i - 1] +
                                    is_prime[i];
}
 
// Function to calculate (x ^ y) % p
// in O(log y)
static long power(long x, long y, long p)
{
    long result = 1;
    while (y > 0)
    {
        if ((y & 1) == 1)
            result = (result * x) % p;
             
        x = (x * x) % p;
        y >>= 1;
    }
    return result;
}
 
// Utility function to count the number of
// ways N! can be split into two co-prime factors
static void numberOfWays(int N)
{
    long count = count_of_primes[N] - 1;
    long mod = 1000000007;
    long answer = power(2, count, mod);
     
    if (N == 1)
        answer = 0;
         
    long ans = answer;
    Console.Write(ans);
}
 
// Driver Code
public static void Main()
{
     
    // Calling sieve function
    sieve();
 
    // Given N
    int N = 7;
 
    // Function call
    numberOfWays(N);
}
}
 
// This code is contributed by akhilsaini


输出:
8




时间复杂度: O(log(log(N))+ log(N))
辅助空间: O(N)