通过确定潜在的造林土地来控制污染Python项目
该计划旨在通过建议树木的数量和应种植的面积来控制特定区域的污染。该程序的核心是计算机视觉。下面给出了一个示例图像,以了解我们将在本文中做什么。请注意,我们将使用Python语言来实现这个项目。
使用的工具和技术
在这个项目中,我们使用numpy 和数学来计算我们周围的区域,使用PIL(Python成像库)进行操作。在跳转到项目之前,让我们了解这些术语。
- NumPy (Numerical Python): NumPy 是Python编程语言的库,增加了对大型、多维数组和矩阵的支持,以及用于对这些数组进行操作的大量高级数学函数集合。
- 数学: Python数学模块使您能够在应用程序中执行常见且有用的数学计算。以下是数学模块的一些实际用途: 使用阶乘计算组合和排列。使用三角函数计算极点的高度。
- PIL(Python图像库): Python Imaging Library是Python编程语言的免费开源附加库,增加了对打开、操作和保存许多不同图像文件格式的支持。
- OpenCV : OpenCV是一个跨平台的库,我们可以使用它来开发实时计算机视觉应用程序。它主要侧重于图像处理、视频捕获和分析,包括人脸检测和对象检测等功能。
分步实施
第 1 步:创建一个新项目
在 PyCharm IDE 或 VS Code 中创建一个新项目
第 2 步:在进入编码部分之前,您必须先做一些预任务
在这个项目中,我们需要一个由谷歌地图提供的 API 密钥。
第 3 步:让我们编写 Map 分割代码
第一步生成的卫星图像经过图像分割,通过聚焦边缘和边界来分离图像中的所有对象。图像被划分为建筑物、树木、水体、道路、荒地等对象。我们选择的第一个算法是用于分割的均值偏移算法。
Python3
import numpy as np
import cv2
from PIL import Image
import urllib.parse
import urllib.request
import io
from math import log, exp, tan, atan, pi, ceil
from place_lookup import find_coordinates
from calc_area import afforestation_area
EARTH_RADIUS = 6378137
EQUATOR_CIRCUMFERENCE = 2 * pi * EARTH_RADIUS
INITIAL_RESOLUTION = EQUATOR_CIRCUMFERENCE / 256.0
ORIGIN_SHIFT = EQUATOR_CIRCUMFERENCE / 2.0
def latlontopixels(lat, lon, zoom):
mx = (lon * ORIGIN_SHIFT) / 180.0
my = log(tan((90 + lat) * pi / 360.0)) / (pi / 180.0)
my = (my * ORIGIN_SHIFT) / 180.0
res = INITIAL_RESOLUTION / (2 ** zoom)
px = (mx + ORIGIN_SHIFT) / res
py = (my + ORIGIN_SHIFT) / res
return px, py
def pixelstolatlon(px, py, zoom):
res = INITIAL_RESOLUTION / (2 ** zoom)
mx = px * res - ORIGIN_SHIFT
my = py * res - ORIGIN_SHIFT
lat = (my / ORIGIN_SHIFT) * 180.0
lat = 180 / pi * (2 * atan(exp(lat * pi / 180.0)) - pi / 2.0)
lon = (mx / ORIGIN_SHIFT) * 180.0
return lat, lon
query = input('What kinda places you want me look up? ')
results = find_coordinates(query)
zoom = 18
ullat, ullon = results['upper_left']
lrlat, lrlon = results['lower_right']
scale = 1
maxsize = 640
ulx, uly = latlontopixels(ullat, ullon, zoom)
lrx, lry = latlontopixels(lrlat, lrlon, zoom)
dx, dy = lrx - ulx, uly - lry
cols, rows = int(ceil(dx / maxsize)), int(ceil(dy / maxsize))
bottom = 120
largura = int(ceil(dx / cols))
altura = int(ceil(dy / rows))
alturaplus = altura + bottom
final = Image.new("RGB", (int(dx), int(dy)))
for x in range(cols):
for y in range(rows):
dxn = largura * (0.5 + x)
dyn = altura * (0.5 + y)
latn, lonn = pixelstolatlon(ulx + dxn, uly - dyn - bottom / 2, zoom)
position = ','.join((str(latn), str(lonn)))
print(x, y, position)
urlparams = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'satellite',
'sensor': 'false',
'scale': scale,
'key': 'AIzaSyA_d4uV3HqPPWbCb77VhXNYn5UcXRLAiVc'})
urlparamsmaps = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'roadmap',
'sensor': 'false',
'scale': scale,
'key': 'AIzaSyA_d4uV3HqPPWbCb77VhXNYn5UcXRLAiVc'})
url = 'http://maps.google.com/maps/api/staticmap?' + urlparams
url1 = 'http://maps.google.com/maps/api/staticmap?' + urlparamsmaps
f = urllib.request.urlopen(url)
h = urllib.request.urlopen(url1)
image = io.BytesIO(f.read())
imagemaps = io.BytesIO(h.read())
im = Image.open(image)
immaps = Image.open(imagemaps)
im.save("map.png")
immaps.save("map_normal.png")
img = cv2.imread('map.png')
img_maps = cv2.imread('map_normal.png')
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
shifted_normal = cv2.pyrMeanShiftFiltering(img_maps, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
hsv_normal = cv2.cvtColor(shifted_normal, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10, 0, 30])
higher_trees = np.array([180, 100, 95])
lower_houses = np.array([90, 10, 100])
higher_houses = np.array([255, 255, 255])
lower_roads = np.array([0, 0, 250])
higher_roads = np.array([20, 20, 255])
lower_feilds = np.array([0, 50, 100])
higher_feilds = np.array([50, 255, 130])
lower_feilds_blue = np.array([0, 80, 100])
higher_feilds_blue = np.array([255, 250, 255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv_normal, lower_roads, higher_roads)
maskfeilds = cv2.inRange(hsv, lower_feilds, higher_feilds)
gausssion_blur_maskfields = cv2.GaussianBlur(maskfeilds, (15, 15), 0)
gausssion_blur_masktree = cv2.GaussianBlur(masktree, (15, 15), 0)
blue_limiter = cv2.inRange(hsv, lower_feilds_blue, higher_feilds_blue)
res_roads = cv2.bitwise_and(img_maps, img, mask=maskroads)
# res_houses = cv2.bitwise_and(img,img,mask=maskhouses)
res_feilds = cv2.bitwise_and(img, img, mask=gausssion_blur_maskfields)
res_trees = cv2.bitwise_and(img, img, mask=masktree)
# show the output image
cv2.imshow('res', res_trees)
cv2.imshow('res_fields', res_feilds)
cv2.imshow('res_roads', res_roads)
# cv2.imshow('res_houses',res_houses)
# cv2.imshow('mask',maskfeilds)
cv2.imshow('img', img)
# cv2.imshow("hsv", hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()
tot_land_area_acres, number_of_trees = afforestation_area()
Python3
import urllib.parse
import requests
def find_coordinates(query):
main_api = 'https://maps.googleapis.com/maps/api/place/textsearch/json?'
url = main_api + \
urllib.parse.urlencode({'query': query}) + '&key=Your API Key'
json_data = requests.get(url).json()
json_status = json_data['status']
print('\nAPI Status :' + json_status)
if json_status == 'OK':
location_details = {
'name_of_place': json_data['results'][0]['name'],
'formatted_address': json_data['results'][0]['formatted_address'],
'location': json_data['results'][0]['geometry']['location'],
'upper_left': (json_data['results'][0]['geometry']['viewport']['northeast']['lat'],
json_data['results'][0]['geometry']['viewport']['southwest']['lng']),
'lower_right': (json_data['results'][0]['geometry']['viewport']['southwest']['lat'],
json_data['results'][0]['geometry']['viewport']['northeast']['lng']),
}
return location_details
Python3
import cv2
import numpy as np
def afforestation_area():
img = cv2.imread('map.png')
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10, 0, 10])
higher_trees = np.array([180, 180, 75])
lower_houses = np.array([90, 10, 100])
higher_houses = np.array([255, 255, 255])
lower_roads = np.array([90, 10, 100])
higher_roads = np.array([100, 100, 100])
lower_feilds = np.array([0, 20, 100])
higher_feilds = np.array([50, 255, 255])
lower_feilds_blue = np.array([0, 80, 100])
higher_feilds_blue = np.array([255, 250, 255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv, lower_roads, higher_roads)
maskfeilds_houses = cv2.inRange(hsv, lower_feilds, higher_feilds)
blue_limiter = cv2.inRange(hsv, lower_feilds_blue, higher_feilds_blue)
maskfeilds = maskfeilds_houses
res = cv2.bitwise_and(img, img, mask=maskfeilds)
print(res.shape) # (640, 622, 3)
print(np.count_nonzero(res)) # 679089
print("number of pixels", res.size//3)
tot_pixels = res.size//3
# print("number of pixels: row x col", res.)
no_of_non_zero_pixels_rgb = np.count_nonzero(res)
row, col, channels = res.shape # 152886
print("percentage of free land : ", (no_of_non_zero_pixels_rgb /
(row*col*channels))) # 0.5686369573954984
percentage_of_land = no_of_non_zero_pixels_rgb/(row*col*channels)
# https://www.unitconverters.net/typography/centimeter-to-pixel-x.htm
# says 1 cm = 37.795275591 pixels
cm_2_pixel = 37.795275591
print("row in cm ", row/cm_2_pixel)
print("col in cm ", col/cm_2_pixel)
row_cm = row/cm_2_pixel
col_cm = col/cm_2_pixel
tot_area_cm = tot_pixels/(row_cm*col_cm)
tot_area_cm_land = tot_area_cm*percentage_of_land
print("Total area in cm^2 : ", tot_area_cm_land)
# in google maps 2.2cm = 50m => 1cm = 22.727272727272727m
# in real life at zoom 18 1cm^2 = (22.727272727272727m)^2
# = 516.5289256198347 m^2
print("Total area in m^2 : ", tot_area_cm_land*(516.5289256198347))
tot_area_m_actual_land = tot_area_cm_land*(516.5289256198347)
# 1 m^2 = 0.000247105 acres :: source Google
tot_area_acre_land = tot_area_m_actual_land*0.000247105
print("Total area in acres : ", tot_area_acre_land)
# https://www.treeplantation.com/tree-spacing-calculator.html
# says if you have 2 ft between rows, and 2ft between
# trees will can take 10890 trees per acre.
number_of_trees = tot_area_acre_land*10890
print(f"{round(number_of_trees)} number of trees can be planted in\
{tot_area_acre_land} acres.")
return tot_area_acre_land, round(number_of_trees)
# show the output image
# cv2.imshow('res',res)
# cv2.imshow('mask',maskfeilds)
# cv2.imshow('img', img)
#cv2.imshow("hsv", hsv)
# cv2.waitKey(delay=0)
# cv2.destroyAllWindows()
# afforestation_area()
Python3
import numpy as np
import cv2
from PIL import Image
import urllib.parse
import urllib.request
import io
from math import log, exp, tan, atan, pi, ceil
from place_lookup import find_coordinates
EARTH_RADIUS = 6378137
EQUATOR_CIRCUMFERENCE = 2 * pi * EARTH_RADIUS
INITIAL_RESOLUTION = EQUATOR_CIRCUMFERENCE / 256.0
ORIGIN_SHIFT = EQUATOR_CIRCUMFERENCE / 2.0
def latlontopixels(lat, lon, zoom):
mx = (lon * ORIGIN_SHIFT) / 180.0
my = log(tan((90 + lat) * pi / 360.0)) / (pi / 180.0)
my = (my * ORIGIN_SHIFT) / 180.0
res = INITIAL_RESOLUTION / (2 ** zoom)
px = (mx + ORIGIN_SHIFT) / res
py = (my + ORIGIN_SHIFT) / res
return px, py
def pixelstolatlon(px, py, zoom):
res = INITIAL_RESOLUTION / (2 ** zoom)
mx = px * res - ORIGIN_SHIFT
my = py * res - ORIGIN_SHIFT
lat = (my / ORIGIN_SHIFT) * 180.0
lat = 180 / pi * (2 * atan(exp(lat * pi / 180.0)) - pi / 2.0)
lon = (mx / ORIGIN_SHIFT) * 180.0
return lat, lon
def calculate_area(res):
"""
Args:
Takes the transformed image as input
Returns:
:tot_area_acre_land: empty area in acres.
:trees: rounded number of trees in the possible area.
"""
# print(res.shape) # (640, 622, 3)
# print(np.count_nonzero(res)) # 679089
# print("number of pixels", res.size//3)
tot_pixels = res.size//3
# print("number of pixels: row x col", res.)
no_of_non_zero_pixels_rgb = np.count_nonzero(res)
row, col, channels = res.shape # 152886
percentage_of_land = no_of_non_zero_pixels_rgb/(row*col*channels)
# https://www.unitconverters.net/typography/centimeter-to-pixel-x.htm
# says 1 cm = 37.795275591 pixels
cm_2_pixel = 37.795275591
# print("row in cm ", row/cm_2_pixel)
# print("col in cm ", col/cm_2_pixel)
row_cm = row/cm_2_pixel
col_cm = col/cm_2_pixel
tot_area_cm = tot_pixels/(row_cm*col_cm)
tot_area_cm_land = tot_area_cm*percentage_of_land
# print("Total area in cm^2 : ", tot_area_cm_land)
# in google maps 2.2cm = 50m => 1cm = 22.727272727272727 m
# in real life at zoom 18 1cm^2 = (22.727272727272727m)^2
# = 516.5289256198347 m^2
tot_area_m_actual_land = tot_area_cm_land*(516.5289256198347)
# 1 m^2 = 0.000247105 acres :: source Google
tot_area_acre_land = tot_area_m_actual_land*0.000247105
# print("Total area in acres : ", tot_area_acre_land)
# https://www.treeplantation.com/tree-spacing-calculator.html
# says if you have 2 ft between rows, and 2ft between trees
# will can take 10890 trees per acre.
number_of_trees = tot_area_acre_land*10890
# print(f"{round(number_of_trees)} number of trees can be planted
# in {tot_area_acre_land} acres.")
return tot_area_acre_land, round(number_of_trees)
def air_pollution_core(ullat, ullon, lrlat, lrlon, results):
zoom = 18
scale = 1
maxsize = 640
ulx, uly = latlontopixels(ullat, ullon, zoom)
lrx, lry = latlontopixels(lrlat, lrlon, zoom)
dx, dy = lrx - ulx, uly - lry
cols, rows = int(ceil(dx / maxsize)), int(ceil(dy / maxsize))
bottom = 120
largura = int(ceil(dx / cols))
altura = int(ceil(dy / rows))
alturaplus = altura + bottom
final = Image.new("RGB", (int(dx), int(dy)))
total_acres_place, total_trees = 0., 0.
total_tile_results = dict()
for x in range(cols):
for y in range(rows):
dxn = largura * (0.5 + x)
dyn = altura * (0.5 + y)
latn, lonn = pixelstolatlon(
ulx + dxn, uly - dyn - bottom / 2, zoom)
position = ','.join((str(latn), str(lonn)))
# print(x, y, position)
urlparams = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'satellite',
'sensor': 'false',
'scale': scale,
'key': 'YOUR_API_HERE'})
url = 'http://maps.google.com/maps/api/staticmap?' + urlparams
f = urllib.request.urlopen(url)
image = io.BytesIO(f.read())
im = Image.open(image)
im.save("map_{}_{}_{}.png".format(x, y, position))
img = cv2.imread("map_{}_{}_{}.png".format(x, y, position))
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10, 0, 10])
higher_trees = np.array([180, 180, 75])
lower_houses = np.array([90, 10, 100])
higher_houses = np.array([255, 255, 255])
lower_roads = np.array([90, 10, 100])
higher_roads = np.array([100, 100, 100])
lower_feilds = np.array([0, 20, 100])
higher_feilds = np.array([50, 255, 255])
lower_feilds_blue = np.array([0, 80, 100])
higher_feilds_blue = np.array([255, 250, 255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv, lower_roads, higher_roads)
maskfeilds_houses = cv2.inRange(hsv, lower_feilds, higher_feilds)
blue_limiter = cv2.inRange(
hsv, lower_feilds_blue, higher_feilds_blue)
maskfeilds = maskfeilds_houses
res = cv2.bitwise_and(img, img, mask=maskfeilds)
area_in_acres, number_of_trees = calculate_area(res)
total_acres_place += area_in_acres
total_trees += number_of_trees
# print(f"area: {area_in_acres}, no of trees: {number_of_trees}")
tile_results = {
"name_of_tile_image": "map_{}_{}_{}.png".format(x, y, position),
"area_acres": area_in_acres,
"number_of_trees": number_of_trees
}
# print(tile_results)
total_tile_results["{}_{}_{}".format(
x, y, position)] = tile_results
# uncomment below for viewing the output images
# cv2.imshow('res',res)
# cv2.imshow('img', img)
# cv2.waitKey(delay=2000)
# cv2.destroyAllWindows()
# print(total_tile_results)
results["total_tile_results"] = total_tile_results
results["total_acres_of_land"] = total_acres_place
results["total_number_of_trees"] = total_trees
return results
def location_based_estimation(place):
"""
:place: is a string that expects a name of a place
"""
results = find_coordinates(place)
ullat, ullon = results['upper_left']
lrlat, lrlon = results['lower_right']
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json
def coordinates_based_estimation(ullat, ullon, lrlat, lrlon):
"""
:upperleft: a string expecting upperleft coordinates of
the tile you are expecting. ex : '12.92,79.11'
:lowerright: a string expecting lowerright coordinates of
the tile you are expecting. ex :'12.91,79.13'
"""
# print(f"{upperleft.replace('\"','')}")
# ullat, ullon = map(float, upperleft.split(','))
# lrlat, lrlon = map(float, lowerright.split(','))
results = dict()
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json
第 4 步:让我们编写用于查找位置的代码
要求用户输入必须在其上执行程序的区域的名称。该区域的卫星图像将被刮取并进行缩放,以生成清晰的地图图像,在该图像上可以进行图像分割。
蟒蛇3
import urllib.parse
import requests
def find_coordinates(query):
main_api = 'https://maps.googleapis.com/maps/api/place/textsearch/json?'
url = main_api + \
urllib.parse.urlencode({'query': query}) + '&key=Your API Key'
json_data = requests.get(url).json()
json_status = json_data['status']
print('\nAPI Status :' + json_status)
if json_status == 'OK':
location_details = {
'name_of_place': json_data['results'][0]['name'],
'formatted_address': json_data['results'][0]['formatted_address'],
'location': json_data['results'][0]['geometry']['location'],
'upper_left': (json_data['results'][0]['geometry']['viewport']['northeast']['lat'],
json_data['results'][0]['geometry']['viewport']['southwest']['lng']),
'lower_right': (json_data['results'][0]['geometry']['viewport']['southwest']['lat'],
json_data['results'][0]['geometry']['viewport']['northeast']['lng']),
}
return location_details
第 5 步:让我们编写代码计算面积
我们将找到给定区域的污染水平。根据该级别,我们将找到使该特定级别恢复正常所需的树木数量。在这个过程中,我们需要训练一个分类器,它可以识别建筑物、树木,最重要的是,可以识别空闲土地。上述方法使用的 Zernike 矩将用作这些段的特征。分类器使用“建筑物”、“树木”、“水”、“自由土地”和“道路”等标签进行训练。训练结束后,我们只需要找到“Free Land”标签下的部分。
蟒蛇3
import cv2
import numpy as np
def afforestation_area():
img = cv2.imread('map.png')
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10, 0, 10])
higher_trees = np.array([180, 180, 75])
lower_houses = np.array([90, 10, 100])
higher_houses = np.array([255, 255, 255])
lower_roads = np.array([90, 10, 100])
higher_roads = np.array([100, 100, 100])
lower_feilds = np.array([0, 20, 100])
higher_feilds = np.array([50, 255, 255])
lower_feilds_blue = np.array([0, 80, 100])
higher_feilds_blue = np.array([255, 250, 255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv, lower_roads, higher_roads)
maskfeilds_houses = cv2.inRange(hsv, lower_feilds, higher_feilds)
blue_limiter = cv2.inRange(hsv, lower_feilds_blue, higher_feilds_blue)
maskfeilds = maskfeilds_houses
res = cv2.bitwise_and(img, img, mask=maskfeilds)
print(res.shape) # (640, 622, 3)
print(np.count_nonzero(res)) # 679089
print("number of pixels", res.size//3)
tot_pixels = res.size//3
# print("number of pixels: row x col", res.)
no_of_non_zero_pixels_rgb = np.count_nonzero(res)
row, col, channels = res.shape # 152886
print("percentage of free land : ", (no_of_non_zero_pixels_rgb /
(row*col*channels))) # 0.5686369573954984
percentage_of_land = no_of_non_zero_pixels_rgb/(row*col*channels)
# https://www.unitconverters.net/typography/centimeter-to-pixel-x.htm
# says 1 cm = 37.795275591 pixels
cm_2_pixel = 37.795275591
print("row in cm ", row/cm_2_pixel)
print("col in cm ", col/cm_2_pixel)
row_cm = row/cm_2_pixel
col_cm = col/cm_2_pixel
tot_area_cm = tot_pixels/(row_cm*col_cm)
tot_area_cm_land = tot_area_cm*percentage_of_land
print("Total area in cm^2 : ", tot_area_cm_land)
# in google maps 2.2cm = 50m => 1cm = 22.727272727272727m
# in real life at zoom 18 1cm^2 = (22.727272727272727m)^2
# = 516.5289256198347 m^2
print("Total area in m^2 : ", tot_area_cm_land*(516.5289256198347))
tot_area_m_actual_land = tot_area_cm_land*(516.5289256198347)
# 1 m^2 = 0.000247105 acres :: source Google
tot_area_acre_land = tot_area_m_actual_land*0.000247105
print("Total area in acres : ", tot_area_acre_land)
# https://www.treeplantation.com/tree-spacing-calculator.html
# says if you have 2 ft between rows, and 2ft between
# trees will can take 10890 trees per acre.
number_of_trees = tot_area_acre_land*10890
print(f"{round(number_of_trees)} number of trees can be planted in\
{tot_area_acre_land} acres.")
return tot_area_acre_land, round(number_of_trees)
# show the output image
# cv2.imshow('res',res)
# cv2.imshow('mask',maskfeilds)
# cv2.imshow('img', img)
#cv2.imshow("hsv", hsv)
# cv2.waitKey(delay=0)
# cv2.destroyAllWindows()
# afforestation_area()
第 6 步:让我们编写主文件
蟒蛇3
import numpy as np
import cv2
from PIL import Image
import urllib.parse
import urllib.request
import io
from math import log, exp, tan, atan, pi, ceil
from place_lookup import find_coordinates
EARTH_RADIUS = 6378137
EQUATOR_CIRCUMFERENCE = 2 * pi * EARTH_RADIUS
INITIAL_RESOLUTION = EQUATOR_CIRCUMFERENCE / 256.0
ORIGIN_SHIFT = EQUATOR_CIRCUMFERENCE / 2.0
def latlontopixels(lat, lon, zoom):
mx = (lon * ORIGIN_SHIFT) / 180.0
my = log(tan((90 + lat) * pi / 360.0)) / (pi / 180.0)
my = (my * ORIGIN_SHIFT) / 180.0
res = INITIAL_RESOLUTION / (2 ** zoom)
px = (mx + ORIGIN_SHIFT) / res
py = (my + ORIGIN_SHIFT) / res
return px, py
def pixelstolatlon(px, py, zoom):
res = INITIAL_RESOLUTION / (2 ** zoom)
mx = px * res - ORIGIN_SHIFT
my = py * res - ORIGIN_SHIFT
lat = (my / ORIGIN_SHIFT) * 180.0
lat = 180 / pi * (2 * atan(exp(lat * pi / 180.0)) - pi / 2.0)
lon = (mx / ORIGIN_SHIFT) * 180.0
return lat, lon
def calculate_area(res):
"""
Args:
Takes the transformed image as input
Returns:
:tot_area_acre_land: empty area in acres.
:trees: rounded number of trees in the possible area.
"""
# print(res.shape) # (640, 622, 3)
# print(np.count_nonzero(res)) # 679089
# print("number of pixels", res.size//3)
tot_pixels = res.size//3
# print("number of pixels: row x col", res.)
no_of_non_zero_pixels_rgb = np.count_nonzero(res)
row, col, channels = res.shape # 152886
percentage_of_land = no_of_non_zero_pixels_rgb/(row*col*channels)
# https://www.unitconverters.net/typography/centimeter-to-pixel-x.htm
# says 1 cm = 37.795275591 pixels
cm_2_pixel = 37.795275591
# print("row in cm ", row/cm_2_pixel)
# print("col in cm ", col/cm_2_pixel)
row_cm = row/cm_2_pixel
col_cm = col/cm_2_pixel
tot_area_cm = tot_pixels/(row_cm*col_cm)
tot_area_cm_land = tot_area_cm*percentage_of_land
# print("Total area in cm^2 : ", tot_area_cm_land)
# in google maps 2.2cm = 50m => 1cm = 22.727272727272727 m
# in real life at zoom 18 1cm^2 = (22.727272727272727m)^2
# = 516.5289256198347 m^2
tot_area_m_actual_land = tot_area_cm_land*(516.5289256198347)
# 1 m^2 = 0.000247105 acres :: source Google
tot_area_acre_land = tot_area_m_actual_land*0.000247105
# print("Total area in acres : ", tot_area_acre_land)
# https://www.treeplantation.com/tree-spacing-calculator.html
# says if you have 2 ft between rows, and 2ft between trees
# will can take 10890 trees per acre.
number_of_trees = tot_area_acre_land*10890
# print(f"{round(number_of_trees)} number of trees can be planted
# in {tot_area_acre_land} acres.")
return tot_area_acre_land, round(number_of_trees)
def air_pollution_core(ullat, ullon, lrlat, lrlon, results):
zoom = 18
scale = 1
maxsize = 640
ulx, uly = latlontopixels(ullat, ullon, zoom)
lrx, lry = latlontopixels(lrlat, lrlon, zoom)
dx, dy = lrx - ulx, uly - lry
cols, rows = int(ceil(dx / maxsize)), int(ceil(dy / maxsize))
bottom = 120
largura = int(ceil(dx / cols))
altura = int(ceil(dy / rows))
alturaplus = altura + bottom
final = Image.new("RGB", (int(dx), int(dy)))
total_acres_place, total_trees = 0., 0.
total_tile_results = dict()
for x in range(cols):
for y in range(rows):
dxn = largura * (0.5 + x)
dyn = altura * (0.5 + y)
latn, lonn = pixelstolatlon(
ulx + dxn, uly - dyn - bottom / 2, zoom)
position = ','.join((str(latn), str(lonn)))
# print(x, y, position)
urlparams = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'satellite',
'sensor': 'false',
'scale': scale,
'key': 'YOUR_API_HERE'})
url = 'http://maps.google.com/maps/api/staticmap?' + urlparams
f = urllib.request.urlopen(url)
image = io.BytesIO(f.read())
im = Image.open(image)
im.save("map_{}_{}_{}.png".format(x, y, position))
img = cv2.imread("map_{}_{}_{}.png".format(x, y, position))
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(
gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10, 0, 10])
higher_trees = np.array([180, 180, 75])
lower_houses = np.array([90, 10, 100])
higher_houses = np.array([255, 255, 255])
lower_roads = np.array([90, 10, 100])
higher_roads = np.array([100, 100, 100])
lower_feilds = np.array([0, 20, 100])
higher_feilds = np.array([50, 255, 255])
lower_feilds_blue = np.array([0, 80, 100])
higher_feilds_blue = np.array([255, 250, 255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv, lower_roads, higher_roads)
maskfeilds_houses = cv2.inRange(hsv, lower_feilds, higher_feilds)
blue_limiter = cv2.inRange(
hsv, lower_feilds_blue, higher_feilds_blue)
maskfeilds = maskfeilds_houses
res = cv2.bitwise_and(img, img, mask=maskfeilds)
area_in_acres, number_of_trees = calculate_area(res)
total_acres_place += area_in_acres
total_trees += number_of_trees
# print(f"area: {area_in_acres}, no of trees: {number_of_trees}")
tile_results = {
"name_of_tile_image": "map_{}_{}_{}.png".format(x, y, position),
"area_acres": area_in_acres,
"number_of_trees": number_of_trees
}
# print(tile_results)
total_tile_results["{}_{}_{}".format(
x, y, position)] = tile_results
# uncomment below for viewing the output images
# cv2.imshow('res',res)
# cv2.imshow('img', img)
# cv2.waitKey(delay=2000)
# cv2.destroyAllWindows()
# print(total_tile_results)
results["total_tile_results"] = total_tile_results
results["total_acres_of_land"] = total_acres_place
results["total_number_of_trees"] = total_trees
return results
def location_based_estimation(place):
"""
:place: is a string that expects a name of a place
"""
results = find_coordinates(place)
ullat, ullon = results['upper_left']
lrlat, lrlon = results['lower_right']
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json
def coordinates_based_estimation(ullat, ullon, lrlat, lrlon):
"""
:upperleft: a string expecting upperleft coordinates of
the tile you are expecting. ex : '12.92,79.11'
:lowerright: a string expecting lowerright coordinates of
the tile you are expecting. ex :'12.91,79.13'
"""
# print(f"{upperleft.replace('\"','')}")
# ullat, ullon = map(float, upperleft.split(','))
# lrlat, lrlon = map(float, lowerright.split(','))
results = dict()
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json
输出:
这就是完整的项目结构的样子。
GitHub 链接: https : //github.com/abhishektyagi2912/airpollution-analysis