给出一个正整数n,相对于一个大质数,例如’素数’,找到从1到n的所有整数的模乘逆。
a的模乘法逆是一个整数“ x”,使得。
a x ≡ 1 (mod prime)
例子 :
Input : n = 10, prime = 17
Output : 1 9 6 13 7 3 5 15 2 12
Explanation :
For 1, modular inverse is 1 as (1 * 1)%17 is 1
For 2, modular inverse is 9 as (2 * 9)%17 is 1
For 3, modular inverse is 6 as (3 * 6)%17 is 1
.......
Input : n = 5, prime = 7
Output : 1 4 5 2 3
一个简单的解决方案是为每个数字一个一个地找到模块化逆。
C++
// C++ program to find modular inverse of
// all numbers from 1 to n using naive
// method
#include
using namespace std;
// A naive method to find modular
// multiplicative inverse of 'a'
// under modulo 'prime'
int modInverse(int a, int prime)
{
a = a % prime;
for (int x=1; x
Java
// Java program to find modular inverse of
// all numbers from 1 to n using naive
// method
import java.io.*;
class GFG {
// A naive method to find modular
// multiplicative inverse of 'a'
// under modulo 'prime'
static int modInverse(int a, int prime)
{
a = a % prime;
for (int x = 1; x
Python3
# Python 3 program to find
# modular inverse of
# all numbers from 1
# to n using naive
# method
# A naive method to find modular
# multiplicative inverse of 'a'
# under modulo 'prime'
def modInverse(a, prime) :
a = a % prime
for x in range(1,prime) :
if ((a*x) % prime == 1) :
return x
return -1
def printModIverses(n, prime) :
for i in range(1,n+1) :
print( modInverse(i, prime) ,end= " ")
# Driver Program
n = 10
prime = 17
printModIverses(n, prime)
# This code is contributed
# by Nikita Tiwari.
C#
// C# program to find modular inverse of
// all numbers from 1 to n using naive
// method
using System;
class GFG {
// A naive method to find modular
// multiplicative inverse of 'a'
// under modulo 'prime'
static int modInverse(int a, int prime)
{
a = a % prime;
for (int x = 1; x
PHP
Javascript
C++
// CPP code to find modular inverse
// from 1 to n w.r.t a big prime number
#include
using namespace std;
// Function to calculate modular
// inverse using D.P
void modularInverse(int n, int prime)
{
int dp[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
cout << dp[i] << ' ';
}
// Driver code
int main()
{
int n = 10, prime = 17;
modularInverse(n, prime);
return 0;
}
Java
// Java code to find modular inverse
// from 1 to n w.r.t a big prime number
import java.io.*;
class GFG {
// Function to calculate modular
// inverse using D.P
static void modularInverse(int n, int prime)
{
int dp[]=new int[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
System.out.print(dp[i] + " ");
}
// Driver Program
public static void main(String args[])
{
int n = 10, prime = 17;
modularInverse(n, prime);
}
}
// This code is contributed by Nikita Tiwari.
Python3
# Python 3 code to find
# modular inverse
# from 1 to n w.r.t a
# big prime number
# Function to calculate modular
# inverse using D.P
def modularInverse( n, prime) :
dp =[0]*(n+1)
dp[0] = dp[1] = 1
for i in range( 2, n+1) :
dp[i] = dp[prime % i] *(prime - prime // i) % prime
for i in range( 1, n+1) :
print(dp[i] ,end=" ")
# Driver code
n = 10
prime = 17
modularInverse(n, prime)
# This code is contributed
# by Nikita Tiwari.
C#
// C# code to find modular inverse
// from 1 to n w.r.t a big prime number
using System;
class GFG {
// Function to calculate modular
// inverse using D.P
static void modularInverse(int n, int prime)
{
int []dp=new int[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
Console.Write(dp[i] + " ");
}
// Driver Program
public static void Main()
{
int n = 10, prime = 17;
modularInverse(n, prime);
}
}
// This code is contributed by vt_m.
PHP
Javascript
输出:
1 9 6 13 7 3 5 15 2 12
一个有效的解决方案基于扩展的Euclid算法。
扩展的欧几里得算法找到整数系数x和y,使得:
ax + by = gcd(a, b)
Let us put b = prime, we get
ax + prime * y = gcd(a, prime)
We know gcd(a, prime) = 1 because
on of the numbers is prime. So we
know
ax + prime * y = 1
Since prime * y is a multiple of prime,
x is modular multiplicative inverse of a.
ax ≡ 1 (mod prime)
我们可以使用以下表达式来递归地找到x(有关详细信息,请参见扩展的Euclid算法)。
扩展的欧几里得算法使用递归调用gcd(b%a,a)计算的结果来更新gcd(a,b)的结果。令通过递归调用计算的x和y的值分别为x prev和y prev 。 x和y使用以下表达式更新。
x = yprev - ⌊prime/a⌋ * xprev
y = xprev
我们使用上面的关系来使用先前计算的值来计算逆。
inverse(a) = (inverse(prime % a) *
(prime - prime/a)) % prime
我们使用使用上述递归结构的动态编程方法。
动态方法:
dp [1] = 1
dp [2] = dp [17%2] *(17-17 / 2)%17 = 9
dp [3] = dp [17%3] *(17-17 / 3)%17 = 6
等等..
C++
// CPP code to find modular inverse
// from 1 to n w.r.t a big prime number
#include
using namespace std;
// Function to calculate modular
// inverse using D.P
void modularInverse(int n, int prime)
{
int dp[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
cout << dp[i] << ' ';
}
// Driver code
int main()
{
int n = 10, prime = 17;
modularInverse(n, prime);
return 0;
}
Java
// Java code to find modular inverse
// from 1 to n w.r.t a big prime number
import java.io.*;
class GFG {
// Function to calculate modular
// inverse using D.P
static void modularInverse(int n, int prime)
{
int dp[]=new int[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
System.out.print(dp[i] + " ");
}
// Driver Program
public static void main(String args[])
{
int n = 10, prime = 17;
modularInverse(n, prime);
}
}
// This code is contributed by Nikita Tiwari.
Python3
# Python 3 code to find
# modular inverse
# from 1 to n w.r.t a
# big prime number
# Function to calculate modular
# inverse using D.P
def modularInverse( n, prime) :
dp =[0]*(n+1)
dp[0] = dp[1] = 1
for i in range( 2, n+1) :
dp[i] = dp[prime % i] *(prime - prime // i) % prime
for i in range( 1, n+1) :
print(dp[i] ,end=" ")
# Driver code
n = 10
prime = 17
modularInverse(n, prime)
# This code is contributed
# by Nikita Tiwari.
C#
// C# code to find modular inverse
// from 1 to n w.r.t a big prime number
using System;
class GFG {
// Function to calculate modular
// inverse using D.P
static void modularInverse(int n, int prime)
{
int []dp=new int[n + 1];
dp[0] = dp[1] = 1;
for (int i = 2; i <= n; i++)
dp[i] = dp[prime % i] *
(prime - prime / i) % prime;
for (int i = 1; i <= n; i++)
Console.Write(dp[i] + " ");
}
// Driver Program
public static void Main()
{
int n = 10, prime = 17;
modularInverse(n, prime);
}
}
// This code is contributed by vt_m.
的PHP
Java脚本
输出:
1 9 6 13 7 3 5 15 2 12
时间复杂度: O(n)
辅助空间: O(n)