Python OpenCV | cv2.erode() 方法
OpenCV-Python是一个Python绑定库,旨在解决计算机视觉问题。 cv2.erode()
方法用于对图像进行腐蚀。侵蚀的基本思想就像土壤侵蚀一样,它侵蚀了前景物体的边界(总是尽量保持前景为白色)。它通常在二进制图像上执行。它需要两个输入,一个是我们的原始图像,第二个称为结构元素或内核,它决定了操作的性质。只有当内核下的所有像素都为1时,原始图像中的一个像素(1或0)才会被认为是1,否则它会被侵蚀(变为0)。
Syntax: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]])
Parameters:
src: It is the image which is to be eroded .
kernel: A structuring element used for erosion. If element = Mat(), a 3 x 3 rectangular structuring element is used. Kernel can be created using getStructuringElement.
dst: It is the output image of the same size and type as src.
anchor: It is a variable of type integer representing anchor point and it’s default value Point is (-1, -1) which means that the anchor is at the kernel center.
borderType: It depicts what kind of border to be added. It is defined by flags like cv2.BORDER_CONSTANT, cv2.BORDER_REFLECT, etc.
iterations: It is number of times erosion is applied.
borderValue: It is border value in case of a constant border.
Return Value: It returns an image.
用于以下所有示例的图像:
示例 #1:
# Python program to explain cv2.erode() method
# importing cv2
import cv2
# importing numpy
import numpy as np
# path
path = r'C:\Users\Rajnish\Desktop\geeksforgeeks\geeks.png'
# Reading an image in default mode
image = cv2.imread(path)
# Window name in which image is displayed
window_name = 'Image'
# Creating kernel
kernel = np.ones((5, 5), np.uint8)
# Using cv2.erode() method
image = cv2.erode(image, kernel)
# Displaying the image
cv2.imshow(window_name, image)
输出:
示例 #2:
# Python program to explain cv2.erode() method
# importing cv2
import cv2
# importing numpy
import numpy as np
# path
path = r'C:\Users\Rajnish\Desktop\geeksforgeeks\geeks.png'
# Reading an image in default mode
image = cv2.imread(path)
# Window name in which image is displayed
window_name = 'Image'
# Creating kernel
kernel = np.ones((6, 6), np.uint8)
# Using cv2.erode() method
image = cv2.erode(image, kernel, cv2.BORDER_REFLECT)
# Displaying the image
cv2.imshow(window_name, image)
输出: