范围 LCM 查询的Java程序
给定一个整数数组,计算 LCM(l, r) 形式的查询。可能有很多查询,因此可以有效地评估查询。
LCM (l, r) denotes the LCM of array elements
that lie between the index l and r
(inclusive of both indices)
Mathematically,
LCM(l, r) = LCM(arr[l], arr[l+1] , ......... ,
arr[r-1], arr[r])
例子:
Inputs : Array = {5, 7, 5, 2, 10, 12 ,11, 17, 14, 1, 44}
Queries: LCM(2, 5), LCM(5, 10), LCM(0, 10)
Outputs: 60 15708 78540
Explanation : In the first query LCM(5, 2, 10, 12) = 60,
similarly in other queries.
一个天真的解决方案是遍历每个查询的数组并使用以下方法计算答案,
LCM(a, b) = (a*b) / GCD(a,b)
但是,由于查询的数量可能很大,因此这种解决方案是不切实际的。
一个有效的解决方案是使用段树。回想一下,在这种不需要更新的情况下,我们可以构建一次树,然后可以重复使用它来回答查询。树中的每个节点都应该存储该特定段的 LCM 值,我们可以使用与上述相同的公式来组合这些段。因此,我们可以有效地回答每个查询!
以下是相同的解决方案。
Java
// LCM of given range queries
// using Segment Tree
class GFG
{
static final int MAX = 1000;
// allocate space for tree
static int tree[] = new int[4 * MAX];
// declaring the array globally
static int arr[] = new int[MAX];
// Function to return gcd of a and b
static int gcd(int a, int b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
// utility function to find lcm
static int lcm(int a, int b)
{
return a * b / gcd(a, b);
}
// Function to build the segment tree
// Node starts beginning index
// of current subtree. start and end
// are indexes in arr[] which is global
static void build(int node, int start, int end)
{
// If there is only one element
// in current subarray
if (start == end)
{
tree[node] = arr[start];
return;
}
int mid = (start + end) / 2;
// build left and right segments
build(2 * node, start, mid);
build(2 * node + 1, mid + 1, end);
// build the parent
int left_lcm = tree[2 * node];
int right_lcm = tree[2 * node + 1];
tree[node] = lcm(left_lcm, right_lcm);
}
// Function to make queries for
// array range )l, r). Node is index
// of root of current segment in segment
// tree (Note that indexes in segment
// tree begin with 1 for simplicity).
// start and end are indexes of subarray
// covered by root of current segment.
static int query(int node, int start,
int end, int l, int r)
{
// Completely outside the segment, returning
// 1 will not affect the lcm;
if (end < l || start > r)
{
return 1;
}
// completely inside the segment
if (l <= start && r >= end)
{
return tree[node];
}
// partially inside
int mid = (start + end) / 2;
int left_lcm = query(2 * node, start, mid, l, r);
int right_lcm = query(2 * node + 1, mid + 1, end, l, r);
return lcm(left_lcm, right_lcm);
}
// Driver code
public static void main(String[] args)
{
//initialize the array
arr[0] = 5;
arr[1] = 7;
arr[2] = 5;
arr[3] = 2;
arr[4] = 10;
arr[5] = 12;
arr[6] = 11;
arr[7] = 17;
arr[8] = 14;
arr[9] = 1;
arr[10] = 44;
// build the segment tree
build(1, 0, 10);
// Now we can answer each query efficiently
// Print LCM of (2, 5)
System.out.println(query(1, 0, 10, 2, 5));
// Print LCM of (5, 10)
System.out.println(query(1, 0, 10, 5, 10));
// Print LCM of (0, 10)
System.out.println(query(1, 0, 10, 0, 10));
}
}
// This code is contributed by 29AjayKumar
输出:
60
15708
78540
有关详细信息,请参阅有关范围 LCM 查询的完整文章!