用于范围 LCM 查询的 Python3 程序
给定一个整数数组,计算 LCM(l, r) 形式的查询。可能有很多查询,因此可以有效地评估查询。
LCM (l, r) denotes the LCM of array elements
that lie between the index l and r
(inclusive of both indices)
Mathematically,
LCM(l, r) = LCM(arr[l], arr[l+1] , ......... ,
arr[r-1], arr[r])
例子:
Inputs : Array = {5, 7, 5, 2, 10, 12 ,11, 17, 14, 1, 44}
Queries: LCM(2, 5), LCM(5, 10), LCM(0, 10)
Outputs: 60 15708 78540
Explanation : In the first query LCM(5, 2, 10, 12) = 60,
similarly in other queries.
一个天真的解决方案是遍历每个查询的数组并通过使用计算答案,
LCM(a, b) = (a*b) / GCD(a,b)
但是,由于查询的数量可能很大,因此这种解决方案是不切实际的。
一个有效的解决方案是使用段树。回想一下,在这种不需要更新的情况下,我们可以构建一次树,然后可以重复使用它来回答查询。树中的每个节点都应存储该特定段的 LCM 值,我们可以使用与上述相同的公式来组合这些段。因此,我们可以有效地回答每个查询!
以下是相同的解决方案。
Python3
# LCM of given range queries using Segment Tree
MAX = 1000
# allocate space for tree
tree = [0] * (4 * MAX)
# declaring the array globally
arr = [0] * MAX
# Function to return gcd of a and b
def gcd(a: int, b: int):
if a == 0:
return b
return gcd(b % a, a)
# utility function to find lcm
def lcm(a: int, b: int):
return (a * b) // gcd(a, b)
# Function to build the segment tree
# Node starts beginning index of current subtree.
# start and end are indexes in arr[] which is global
def build(node: int, start: int, end: int):
# If there is only one element
# in current subarray
if start == end:
tree[node] = arr[start]
return
mid = (start + end) // 2
# build left and right segments
build(2 * node, start, mid)
build(2 * node + 1, mid + 1, end)
# build the parent
left_lcm = tree[2 * node]
right_lcm = tree[2 * node + 1]
tree[node] = lcm(left_lcm, right_lcm)
# Function to make queries for array range )l, r).
# Node is index of root of current segment in segment
# tree (Note that indexes in segment tree begin with 1
# for simplicity).
# start and end are indexes of subarray covered by root
# of current segment.
def query(node: int, start: int,
end: int, l: int, r: int):
# Completely outside the segment,
# returning 1 will not affect the lcm;
if end < l or start > r:
return 1
# completely inside the segment
if l <= start and r >= end:
return tree[node]
# partially inside
mid = (start + end) // 2
left_lcm = query(2 * node, start, mid, l, r)
right_lcm = query(2 * node + 1,
mid + 1, end, l, r)
return lcm(left_lcm, right_lcm)
# Driver Code
if __name__ == "__main__":
# initialize the array
arr[0] = 5
arr[1] = 7
arr[2] = 5
arr[3] = 2
arr[4] = 10
arr[5] = 12
arr[6] = 11
arr[7] = 17
arr[8] = 14
arr[9] = 1
arr[10] = 44
# build the segment tree
build(1, 0, 10)
# Now we can answer each query efficiently
# Print LCM of (2, 5)
print(query(1, 0, 10, 2, 5))
# Print LCM of (5, 10)
print(query(1, 0, 10, 5, 10))
# Print LCM of (0, 10)
print(query(1, 0, 10, 0, 10))
# This code is contributed by
# sanjeev2552
输出:
60
15708
78540
有关详细信息,请参阅有关范围 LCM 查询的完整文章!