Python OpenCV - 用于调整图像大小的双三次插值
图像大小调整是一个重要的概念,希望增加或减少图片中的像素数量。图像大小调整的应用可以在更广泛的场景下发生:图像的音译、校正镜头失真、改变视角和旋转图片。调整大小的结果因使用的插值算法种类而异。
注意:在应用插值算法时,某些信息肯定会丢失,因为这些是近似算法。
什么是插值?
插值的工作原理是使用已知数据来估计未知点的值。例如:如果您想了解网格内选定位置的图片的像素强度(比如坐标 (x, y),但只有 (x-1,y-1) 和 (x+1,y+1) ) 已知,您将使用线性插值估计 (x, y) 处的值。已知值的数量越多,估计像素值的准确性就越高。
插值算法
不同的插值算法包括最近邻、 bilinear 、 bicubic等。赌它们的复杂性,它们在插值时使用从 0 到 256(或更多)相邻像素的任何地方。通过增加评估新像素值时考虑的相邻像素的数量,这些算法的准确性显着提高。插值算法主要用于将高分辨率图像的大小调整和扭曲为偶尔的分辨率图像。有各种插值算法,其中之一是双三次插值。
双三次插值
除了使用已知像素值的 2×2 邻域之外,Bicubic 通过考虑已知像素的最接近的 4×4 邻域——总共 16 个像素,比双线性更进一步。与距离较远的像素相比,靠近要估计的像素的像素被赋予更高的权重。因此,最远的像素具有最小的权重。与 NN 或双线性算法相比,双三次插值的结果要好得多。这可能是因为在估计所需值时考虑了更多数量的已知像素值。因此,使其成为所有最重要的标准插值方法之一。
用Python实现双三次插值
导入必要的模块:我们导入所有依赖项,如 cv2 (OpenCV)、NumPy 和 math。
Python
# Import modules
import cv2
import numpy as np
import math
import sys, time
Python
# Interpolation kernel
def u(s, a):
if (abs(s) >= 0) & (abs(s) <= 1):
return (a+2)*(abs(s)**3)-(a+3)*(abs(s)**2)+1
elif (abs(s) > 1) & (abs(s) <= 2):
return a*(abs(s)**3)-(5*a)*(abs(s)**2)+(8*a)*abs(s)-4*a
return 0
Python
# Padding
def padding(img, H, W, C):
zimg = np.zeros((H+4, W+4, C))
zimg[2:H+2, 2:W+2, :C] = img
# Pad the first/last two col and row
zimg[2:H+2, 0:2, :C] = img[:, 0:1, :C]
zimg[H+2:H+4, 2:W+2, :] = img[H-1:H, :, :]
zimg[2:H+2, W+2:W+4, :] = img[:, W-1:W, :]
zimg[0:2, 2:W+2, :C] = img[0:1, :, :C]
# Pad the missing eight points
zimg[0:2, 0:2, :C] = img[0, 0, :C]
zimg[H+2:H+4, 0:2, :C] = img[H-1, 0, :C]
zimg[H+2:H+4, W+2:W+4, :C] = img[H-1, W-1, :C]
zimg[0:2, W+2:W+4, :C] = img[0, W-1, :C]
return zimg
Python
# Bicubic operation
def bicubic(img, ratio, a):
# Get image size
H, W, C = img.shape
# Here H = Height, W = weight,
# C = Number of channels if the
# image is coloured.
img = padding(img, H, W, C)
# Create new image
dH = math.floor(H*ratio)
dW = math.floor(W*ratio)
# Converting into matrix
dst = np.zeros((dH, dW, 3))
# np.zeroes generates a matrix
# consisting only of zeroes
# Here we initialize our answer
# (dst) as zero
h = 1/ratio
print('Start bicubic interpolation')
print('It will take a little while...')
inc = 0
for c in range(C):
for j in range(dH):
for i in range(dW):
# Getting the coordinates of the
# nearby values
x, y = i * h + 2, j * h + 2
x1 = 1 + x - math.floor(x)
x2 = x - math.floor(x)
x3 = math.floor(x) + 1 - x
x4 = math.floor(x) + 2 - x
y1 = 1 + y - math.floor(y)
y2 = y - math.floor(y)
y3 = math.floor(y) + 1 - y
y4 = math.floor(y) + 2 - y
# Considering all nearby 16 values
mat_l = np.matrix([[u(x1, a), u(x2, a), u(x3, a), u(x4, a)]])
mat_m = np.matrix([[img[int(y-y1), int(x-x1), c],
img[int(y-y2), int(x-x1), c],
img[int(y+y3), int(x-x1), c],
img[int(y+y4), int(x-x1), c]],
[img[int(y-y1), int(x-x2), c],
img[int(y-y2), int(x-x2), c],
img[int(y+y3), int(x-x2), c],
img[int(y+y4), int(x-x2), c]],
[img[int(y-y1), int(x+x3), c],
img[int(y-y2), int(x+x3), c],
img[int(y+y3), int(x+x3), c],
img[int(y+y4), int(x+x3), c]],
[img[int(y-y1), int(x+x4), c],
img[int(y-y2), int(x+x4), c],
img[int(y+y3), int(x+x4), c],
img[int(y+y4), int(x+x4), c]]])
mat_r = np.matrix(
[[u(y1, a)], [u(y2, a)], [u(y3, a)], [u(y4, a)]])
# Here the dot function is used to get the dot
# product of 2 matrices
dst[j, i, c] = np.dot(np.dot(mat_l, mat_m), mat_r)
# If there is an error message, it
# directly goes to stderr
sys.stderr.write('\n')
# Flushing the buffer
sys.stderr.flush()
return dst
Python3
# Read image
# You can put your input image over here
# to run bicubic interpolation
# The read function of Open CV is used
# for this task
img = cv2.imread('gfg.png')
# Scale factor
ratio = 2
# Coefficient
a = -1/2
# Passing the input image in the
# bicubic function
dst = bicubic(img, ratio, a)
print('Completed!')
# Saving the output image
cv2.imwrite('bicubic.png', dst)
bicubicImg=cv2.imread('bicubic.png')
Python3
# display shapes of both images
print('Original Image Shape:',img.shape)
print('Generated Bicubic Image Shape:',bicubicImg.shape)
Python3
# import modules
import cv2
import numpy as np
import math
import sys
import time
# Interpolation kernel
def u(s, a):
if (abs(s) >= 0) & (abs(s) <= 1):
return (a+2)*(abs(s)**3)-(a+3)*(abs(s)**2)+1
elif (abs(s) > 1) & (abs(s) <= 2):
return a*(abs(s)**3)-(5*a)*(abs(s)**2)+(8*a)*abs(s)-4*a
return 0
# Padding
def padding(img, H, W, C):
zimg = np.zeros((H+4, W+4, C))
zimg[2:H+2, 2:W+2, :C] = img
# Pad the first/last two col and row
zimg[2:H+2, 0:2, :C] = img[:, 0:1, :C]
zimg[H+2:H+4, 2:W+2, :] = img[H-1:H, :, :]
zimg[2:H+2, W+2:W+4, :] = img[:, W-1:W, :]
zimg[0:2, 2:W+2, :C] = img[0:1, :, :C]
# Pad the missing eight points
zimg[0:2, 0:2, :C] = img[0, 0, :C]
zimg[H+2:H+4, 0:2, :C] = img[H-1, 0, :C]
zimg[H+2:H+4, W+2:W+4, :C] = img[H-1, W-1, :C]
zimg[0:2, W+2:W+4, :C] = img[0, W-1, :C]
return zimg
# Bicubic operation
def bicubic(img, ratio, a):
# Get image size
H, W, C = img.shape
# Here H = Height, W = weight,
# C = Number of channels if the
# image is coloured.
img = padding(img, H, W, C)
# Create new image
dH = math.floor(H*ratio)
dW = math.floor(W*ratio)
# Converting into matrix
dst = np.zeros((dH, dW, 3))
# np.zeroes generates a matrix
# consisting only of zeroes
# Here we initialize our answer
# (dst) as zero
h = 1/ratio
print('Start bicubic interpolation')
print('It will take a little while...')
inc = 0
for c in range(C):
for j in range(dH):
for i in range(dW):
# Getting the coordinates of the
# nearby values
x, y = i * h + 2, j * h + 2
x1 = 1 + x - math.floor(x)
x2 = x - math.floor(x)
x3 = math.floor(x) + 1 - x
x4 = math.floor(x) + 2 - x
y1 = 1 + y - math.floor(y)
y2 = y - math.floor(y)
y3 = math.floor(y) + 1 - y
y4 = math.floor(y) + 2 - y
# Considering all nearby 16 values
mat_l = np.matrix([[u(x1, a), u(x2, a), u(x3, a), u(x4, a)]])
mat_m = np.matrix([[img[int(y-y1), int(x-x1), c],
img[int(y-y2), int(x-x1), c],
img[int(y+y3), int(x-x1), c],
img[int(y+y4), int(x-x1), c]],
[img[int(y-y1), int(x-x2), c],
img[int(y-y2), int(x-x2), c],
img[int(y+y3), int(x-x2), c],
img[int(y+y4), int(x-x2), c]],
[img[int(y-y1), int(x+x3), c],
img[int(y-y2), int(x+x3), c],
img[int(y+y3), int(x+x3), c],
img[int(y+y4), int(x+x3), c]],
[img[int(y-y1), int(x+x4), c],
img[int(y-y2), int(x+x4), c],
img[int(y+y3), int(x+x4), c],
img[int(y+y4), int(x+x4), c]]])
mat_r = np.matrix(
[[u(y1, a)], [u(y2, a)], [u(y3, a)], [u(y4, a)]])
# Here the dot function is used to get
# the dot product of 2 matrices
dst[j, i, c] = np.dot(np.dot(mat_l, mat_m), mat_r)
# If there is an error message, it
# directly goes to stderr
sys.stderr.write('\n')
# Flushing the buffer
sys.stderr.flush()
return dst
# Read image
# You can put your input image over
# here to run bicubic interpolation
# The read function of Open CV is used
# for this task
img = cv2.imread('gfg.png')
# Scale factor
ratio = 2
# Coefficient
a = -1/2
# Passing the input image in the
# bicubic function
dst = bicubic(img, ratio, a)
print('Completed!')
# Saving the output image
cv2.imwrite('bicubic.png', dst)
bicubicImg = cv2.imread('bicubic.png')
# display shapes of both images
print('Original Image Shape:', img.shape)
print('Generated Bicubic Image Shape:', bicubicImg.shape)
编写双三次插值的插值核函数:双三次插值核的形式为:
这里系数 a 的值决定了内核的性能,它主要在 -0.5 到 -0.75 之间以获得最佳性能。
Python
# Interpolation kernel
def u(s, a):
if (abs(s) >= 0) & (abs(s) <= 1):
return (a+2)*(abs(s)**3)-(a+3)*(abs(s)**2)+1
elif (abs(s) > 1) & (abs(s) <= 2):
return a*(abs(s)**3)-(5*a)*(abs(s)**2)+(8*a)*abs(s)-4*a
return 0
向输入图像添加填充:定义填充函数以向图像添加边框。 OpenCV 具有各种填充功能。当插值需要填充源时,源图像的边界需要扩展,因为它需要具有信息以便它可以计算位于边界上的所有目标像素的像素值。
Python
# Padding
def padding(img, H, W, C):
zimg = np.zeros((H+4, W+4, C))
zimg[2:H+2, 2:W+2, :C] = img
# Pad the first/last two col and row
zimg[2:H+2, 0:2, :C] = img[:, 0:1, :C]
zimg[H+2:H+4, 2:W+2, :] = img[H-1:H, :, :]
zimg[2:H+2, W+2:W+4, :] = img[:, W-1:W, :]
zimg[0:2, 2:W+2, :C] = img[0:1, :, :C]
# Pad the missing eight points
zimg[0:2, 0:2, :C] = img[0, 0, :C]
zimg[H+2:H+4, 0:2, :C] = img[H-1, 0, :C]
zimg[H+2:H+4, W+2:W+4, :C] = img[H-1, W-1, :C]
zimg[0:2, W+2:W+4, :C] = img[0, W-1, :C]
return zimg
编写双三次插值函数:定义双三次函数并将图像作为输入传递。 (您可以根据要求将缩放因子更改为 x2 或 x4。)
Python
# Bicubic operation
def bicubic(img, ratio, a):
# Get image size
H, W, C = img.shape
# Here H = Height, W = weight,
# C = Number of channels if the
# image is coloured.
img = padding(img, H, W, C)
# Create new image
dH = math.floor(H*ratio)
dW = math.floor(W*ratio)
# Converting into matrix
dst = np.zeros((dH, dW, 3))
# np.zeroes generates a matrix
# consisting only of zeroes
# Here we initialize our answer
# (dst) as zero
h = 1/ratio
print('Start bicubic interpolation')
print('It will take a little while...')
inc = 0
for c in range(C):
for j in range(dH):
for i in range(dW):
# Getting the coordinates of the
# nearby values
x, y = i * h + 2, j * h + 2
x1 = 1 + x - math.floor(x)
x2 = x - math.floor(x)
x3 = math.floor(x) + 1 - x
x4 = math.floor(x) + 2 - x
y1 = 1 + y - math.floor(y)
y2 = y - math.floor(y)
y3 = math.floor(y) + 1 - y
y4 = math.floor(y) + 2 - y
# Considering all nearby 16 values
mat_l = np.matrix([[u(x1, a), u(x2, a), u(x3, a), u(x4, a)]])
mat_m = np.matrix([[img[int(y-y1), int(x-x1), c],
img[int(y-y2), int(x-x1), c],
img[int(y+y3), int(x-x1), c],
img[int(y+y4), int(x-x1), c]],
[img[int(y-y1), int(x-x2), c],
img[int(y-y2), int(x-x2), c],
img[int(y+y3), int(x-x2), c],
img[int(y+y4), int(x-x2), c]],
[img[int(y-y1), int(x+x3), c],
img[int(y-y2), int(x+x3), c],
img[int(y+y3), int(x+x3), c],
img[int(y+y4), int(x+x3), c]],
[img[int(y-y1), int(x+x4), c],
img[int(y-y2), int(x+x4), c],
img[int(y+y3), int(x+x4), c],
img[int(y+y4), int(x+x4), c]]])
mat_r = np.matrix(
[[u(y1, a)], [u(y2, a)], [u(y3, a)], [u(y4, a)]])
# Here the dot function is used to get the dot
# product of 2 matrices
dst[j, i, c] = np.dot(np.dot(mat_l, mat_m), mat_r)
# If there is an error message, it
# directly goes to stderr
sys.stderr.write('\n')
# Flushing the buffer
sys.stderr.flush()
return dst
从用户获取输入并将输入传递给 bicubic函数以生成调整大小的图像:将所需图像传递给 bicubic函数并将输出保存为目录中的单独文件。
蟒蛇3
# Read image
# You can put your input image over here
# to run bicubic interpolation
# The read function of Open CV is used
# for this task
img = cv2.imread('gfg.png')
# Scale factor
ratio = 2
# Coefficient
a = -1/2
# Passing the input image in the
# bicubic function
dst = bicubic(img, ratio, a)
print('Completed!')
# Saving the output image
cv2.imwrite('bicubic.png', dst)
bicubicImg=cv2.imread('bicubic.png')
将生成的图像与输入图像进行比较:使用 shape() 方法比较两个图像的高度、宽度和颜色模式。
蟒蛇3
# display shapes of both images
print('Original Image Shape:',img.shape)
print('Generated Bicubic Image Shape:',bicubicImg.shape)
完整代码:
输入图像:
蟒蛇3
# import modules
import cv2
import numpy as np
import math
import sys
import time
# Interpolation kernel
def u(s, a):
if (abs(s) >= 0) & (abs(s) <= 1):
return (a+2)*(abs(s)**3)-(a+3)*(abs(s)**2)+1
elif (abs(s) > 1) & (abs(s) <= 2):
return a*(abs(s)**3)-(5*a)*(abs(s)**2)+(8*a)*abs(s)-4*a
return 0
# Padding
def padding(img, H, W, C):
zimg = np.zeros((H+4, W+4, C))
zimg[2:H+2, 2:W+2, :C] = img
# Pad the first/last two col and row
zimg[2:H+2, 0:2, :C] = img[:, 0:1, :C]
zimg[H+2:H+4, 2:W+2, :] = img[H-1:H, :, :]
zimg[2:H+2, W+2:W+4, :] = img[:, W-1:W, :]
zimg[0:2, 2:W+2, :C] = img[0:1, :, :C]
# Pad the missing eight points
zimg[0:2, 0:2, :C] = img[0, 0, :C]
zimg[H+2:H+4, 0:2, :C] = img[H-1, 0, :C]
zimg[H+2:H+4, W+2:W+4, :C] = img[H-1, W-1, :C]
zimg[0:2, W+2:W+4, :C] = img[0, W-1, :C]
return zimg
# Bicubic operation
def bicubic(img, ratio, a):
# Get image size
H, W, C = img.shape
# Here H = Height, W = weight,
# C = Number of channels if the
# image is coloured.
img = padding(img, H, W, C)
# Create new image
dH = math.floor(H*ratio)
dW = math.floor(W*ratio)
# Converting into matrix
dst = np.zeros((dH, dW, 3))
# np.zeroes generates a matrix
# consisting only of zeroes
# Here we initialize our answer
# (dst) as zero
h = 1/ratio
print('Start bicubic interpolation')
print('It will take a little while...')
inc = 0
for c in range(C):
for j in range(dH):
for i in range(dW):
# Getting the coordinates of the
# nearby values
x, y = i * h + 2, j * h + 2
x1 = 1 + x - math.floor(x)
x2 = x - math.floor(x)
x3 = math.floor(x) + 1 - x
x4 = math.floor(x) + 2 - x
y1 = 1 + y - math.floor(y)
y2 = y - math.floor(y)
y3 = math.floor(y) + 1 - y
y4 = math.floor(y) + 2 - y
# Considering all nearby 16 values
mat_l = np.matrix([[u(x1, a), u(x2, a), u(x3, a), u(x4, a)]])
mat_m = np.matrix([[img[int(y-y1), int(x-x1), c],
img[int(y-y2), int(x-x1), c],
img[int(y+y3), int(x-x1), c],
img[int(y+y4), int(x-x1), c]],
[img[int(y-y1), int(x-x2), c],
img[int(y-y2), int(x-x2), c],
img[int(y+y3), int(x-x2), c],
img[int(y+y4), int(x-x2), c]],
[img[int(y-y1), int(x+x3), c],
img[int(y-y2), int(x+x3), c],
img[int(y+y3), int(x+x3), c],
img[int(y+y4), int(x+x3), c]],
[img[int(y-y1), int(x+x4), c],
img[int(y-y2), int(x+x4), c],
img[int(y+y3), int(x+x4), c],
img[int(y+y4), int(x+x4), c]]])
mat_r = np.matrix(
[[u(y1, a)], [u(y2, a)], [u(y3, a)], [u(y4, a)]])
# Here the dot function is used to get
# the dot product of 2 matrices
dst[j, i, c] = np.dot(np.dot(mat_l, mat_m), mat_r)
# If there is an error message, it
# directly goes to stderr
sys.stderr.write('\n')
# Flushing the buffer
sys.stderr.flush()
return dst
# Read image
# You can put your input image over
# here to run bicubic interpolation
# The read function of Open CV is used
# for this task
img = cv2.imread('gfg.png')
# Scale factor
ratio = 2
# Coefficient
a = -1/2
# Passing the input image in the
# bicubic function
dst = bicubic(img, ratio, a)
print('Completed!')
# Saving the output image
cv2.imwrite('bicubic.png', dst)
bicubicImg = cv2.imread('bicubic.png')
# display shapes of both images
print('Original Image Shape:', img.shape)
print('Generated Bicubic Image Shape:', bicubicImg.shape)
输出:
输出图像:
解释:
因此,从上面的代码中,我们可以看到输入图像已使用双三次插值技术调整大小。由于发布原因,下面给出的图像已被压缩。可以运行上面的代码,看看使用双三次插值平滑增加图像大小的实现。此处的未知像素值通过考虑 16 个最接近的已知值来填充。