📅  最后修改于: 2023-12-03 14:39:04.509000             🧑  作者: Mango
Albert(A Lite BERT)是一个轻量版的BERT,采用了压缩方法和参数共享来减少参数数量,从而提高训练和推理的速度。在本文中,我们将介绍如何使用Python中的Albert预训练模型进行文本分类任务。
我们需要安装transformers
库,这里使用pip进行安装。
!pip install transformers
加载阿里云提供的中文Albert预训练模型,可以通过AutoModelForSequenceClassification.from_pretrained()
方法进行加载。
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("voidful/albert_chinese_tiny")
model = AutoModelForSequenceClassification.from_pretrained("voidful/albert_chinese_tiny")
我们使用torchtext
库来处理数据,torchtext
可用于文本、图像和音频数据。
import torch
from torchtext.legacy.datasets import AG_NEWS
from torch.utils.data import DataLoader
from torchtext.legacy.data.utils import get_tokenizer
from torchtext.legacy.data.vocab import build_vocab_from_iterator
from torchtext.legacy.data import (DataLoader, Dataset, Example, Field,
LabelField)
# 定义我们的文本和标签字段
tokenizer = get_tokenizer('basic_english')
TEXT = Field(tokenize=tokenizer, lower=True, sequential=True, use_vocab=True)
LABEL = LabelField(dtype=torch.float)
train_dataset, test_dataset = AG_NEWS(split=('train', 'test'))
def get_vocab(dataset):
"""从数据集中构建词汇表"""
token_iterator = iter([tokenizer(item[1])
for item in dataset])
vocab = build_vocab_from_iterator(token_iterator,
specials=['<unk>', '<pad>', '<bos>', '<eos>'],
specials_first=True)
return vocab
# 为文本和标签定义批量化操作
train_batch_size = 32
test_batch_size = 256
TEXT.build_vocab(train_dataset, min_freq=2, max_size=int(1e4))
LABEL.build_vocab(train_dataset)
# 为训练数据和测试数据创建迭代器
train_iterator, test_iterator = (DataLoader(dataset=train_dataset,
batch_size=train_batch_size,
shuffle=True),
DataLoader(dataset=test_dataset,
batch_size=test_batch_size,
shuffle=True))
定义训练模型的函数,使用CrossEntropyLoss
损失函数和随机梯度下降法进行模型优化。在每个epoch结束时,评估模型并打印出准确率。
import time
from torch import nn
from torch import optim
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
text = batch[0]
target = batch[1]
target = target - 1
optimizer.zero_grad()
output = model(text)[0]
loss = criterion(output, target.long())
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
correct = 0
with torch.no_grad():
for batch in iterator:
text = batch[0]
target = batch[1]
target = target - 1
output = model(text)[0]
loss = criterion(output, target.long())
epoch_loss += loss.item()
## 计算准确率
softmax = nn.Softmax(dim=1)
pred = output.argmax(dim=1)
target = target.type(torch.LongTensor)
correct += (pred.eq(target).sum().item())
acc = correct / len(iterator.dataset)
return epoch_loss / len(iterator), acc
def run_training_loop(model, train_iterator, test_iterator, optimizer, criterion, num_epochs):
for epoch in range(num_epochs):
start_time = time.time()
train_loss = train(model, train_iterator, optimizer, criterion)
test_loss, test_acc = evaluate(model, test_iterator, criterion)
end_time = time.time()
epoch_mins, epoch_secs = int((end_time - start_time) / 60), int((end_time - start_time) % 60)
print(f'Epoch: {epoch + 1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f}')
print(f'\t● Test Loss: {test_loss:.3f} | Test Acc: {test_acc * 100:.2f}%\n')
optimizer = optim.SGD(model.parameters(), lr=1e-5)
criterion = nn.CrossEntropyLoss()
num_epochs = 5
run_training_loop(model, train_iterator, test_iterator, optimizer, criterion, num_epochs)
通过本文,我们了解了如何使用Python中的Albert预训练模型进行文本分类任务。我们介绍了如何加载预训练模型,并使用torchtext
库来处理数据。在训练模型时,我们采用了CrossEntropyLoss
损失函数和随机梯度下降法进行模型优化。在每个epoch结束时,评估模型并打印出准确率。