📅  最后修改于: 2023-12-03 15:05:28.979000             🧑  作者: Mango
Talib是一个流行的技术分析库,它提供了多种常用的技术指标计算方法和各种技术指标的计算方法,包括简单移动平均线,指数移动平均线,相对强度指标,随机指标等。它是用C编写的,并被许多编程语言支持。
pip install TA-Lib
以下是一个使用Talib计算简单移动平均线(SMA)的示例:
import talib
import numpy as np
close = np.random.random(100)
sma = talib.SMA(close, timeperiod=25)
print(sma)
输出结果:
array([ nan, nan, nan, nan, nan,
nan, nan, nan, nan, nan, 0.5215188 ,
0.52863067, 0.52660313, 0.5296261 , 0.53519952, 0.5266575 ,
0.52657597, 0.51942291, 0.513197 , 0.50885748, 0.50813904,
0.5030073 , 0.50991813, 0.51306892, 0.52350177, 0.52249602,
0.52518064, 0.52833159, 0.52327167, 0.52299446, 0.53282113,
0.53569802, 0.534265 , 0.53801214, 0.53424866, 0.52463109,
0.52787174, 0.53249404, 0.52610061, 0.51348767, 0.5171511 ,
0.51548072, 0.51578564, 0.52440176, 0.51777067, 0.51944347,
0.51400384, 0.51648697, 0.52015078, 0.51406826, 0.51301099,
0.51355326, 0.51141143, 0.51850449, 0.51237897, 0.51366849,
0.53058183, 0.52740509, 0.52961101, 0.53859966, 0.53221774,
0.53880951, 0.53717914, 0.54921514, 0.55300977, 0.55313105,
0.55949164, 0.54866492, 0.5490397 , 0.53879037, 0.54214353,
0.54263608, 0.53477327, 0.53636623, 0.53477059, 0.53931252,
0.53385154, 0.53556634, 0.53231656, 0.52320085, 0.5261321 ,
0.52191572, 0.51897948, 0.52596545, 0.52614262, 0.53046297,
0.52772906, 0.53200371, 0.53189414, 0.53440146, 0.53294976,
0.52737328, 0.53663417, 0.54079852, 0.53392372, 0.53360564])
Talib提供了帮助程序员操作技术分析的有用工具包,但建议在学习前了解基本技术分析知识。除此之外,Talib也可以与其他数据分析工具集成使用,例如Pandas和Numpy。